L(s) = 1 | + (−1.53 + 0.886i)5-s + (−2.64 − 0.0987i)7-s + (−5.33 − 3.08i)11-s + (−4.60 − 2.65i)13-s + (−4.69 + 2.71i)17-s + (0.935 − 1.62i)19-s + (0.562 − 0.324i)23-s + (−0.928 + 1.60i)25-s + (1.14 + 1.98i)29-s + 10.2·31-s + (4.14 − 2.19i)35-s + (1.09 − 1.89i)37-s + (6.64 + 3.83i)41-s + (−1.07 + 0.620i)43-s + 0.468·47-s + ⋯ |
L(s) = 1 | + (−0.686 + 0.396i)5-s + (−0.999 − 0.0373i)7-s + (−1.60 − 0.929i)11-s + (−1.27 − 0.737i)13-s + (−1.13 + 0.657i)17-s + (0.214 − 0.371i)19-s + (0.117 − 0.0677i)23-s + (−0.185 + 0.321i)25-s + (0.213 + 0.369i)29-s + 1.83·31-s + (0.700 − 0.370i)35-s + (0.180 − 0.311i)37-s + (1.03 + 0.599i)41-s + (−0.163 + 0.0946i)43-s + 0.0683·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.932 - 0.361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.932 - 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6086429089\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6086429089\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.64 + 0.0987i)T \) |
good | 5 | \( 1 + (1.53 - 0.886i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (5.33 + 3.08i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (4.60 + 2.65i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (4.69 - 2.71i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.935 + 1.62i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.562 + 0.324i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.14 - 1.98i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 10.2T + 31T^{2} \) |
| 37 | \( 1 + (-1.09 + 1.89i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.64 - 3.83i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.07 - 0.620i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.468T + 47T^{2} \) |
| 53 | \( 1 + (-0.941 - 1.63i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 9.24T + 59T^{2} \) |
| 61 | \( 1 + 6.33iT - 61T^{2} \) |
| 67 | \( 1 - 9.93iT - 67T^{2} \) |
| 71 | \( 1 + 11.1iT - 71T^{2} \) |
| 73 | \( 1 + (4.77 - 2.75i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (4.06 + 7.03i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.228 - 0.132i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (12.5 - 7.26i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.603935125061451664772461310294, −7.979509790710904397026015094783, −7.33015232723815699259598071330, −6.57058739769086968950006434149, −5.73175547159679148079240684625, −4.93383699140421930196658559902, −3.97290186568778175550096027899, −2.82808114084507696544226741579, −2.69086286936565058744525277408, −0.50534400096554261240341129702,
0.38351496065811961921914856634, 2.33266912278815929527665996158, 2.77501669060320854075488916213, 4.21508139244432880124233376040, 4.63723014828331485090267658784, 5.50032212716550735640005567744, 6.61597598664476062314711177297, 7.20374557188469089764026763755, 7.85667673976992426227105558123, 8.626623684462106473954743054361