L(s) = 1 | + (−1.53 + 0.886i)5-s + (−2.64 − 0.0987i)7-s + (−5.33 − 3.08i)11-s + (−4.60 − 2.65i)13-s + (−4.69 + 2.71i)17-s + (0.935 − 1.62i)19-s + (0.562 − 0.324i)23-s + (−0.928 + 1.60i)25-s + (1.14 + 1.98i)29-s + 10.2·31-s + (4.14 − 2.19i)35-s + (1.09 − 1.89i)37-s + (6.64 + 3.83i)41-s + (−1.07 + 0.620i)43-s + 0.468·47-s + ⋯ |
L(s) = 1 | + (−0.686 + 0.396i)5-s + (−0.999 − 0.0373i)7-s + (−1.60 − 0.929i)11-s + (−1.27 − 0.737i)13-s + (−1.13 + 0.657i)17-s + (0.214 − 0.371i)19-s + (0.117 − 0.0677i)23-s + (−0.185 + 0.321i)25-s + (0.213 + 0.369i)29-s + 1.83·31-s + (0.700 − 0.370i)35-s + (0.180 − 0.311i)37-s + (1.03 + 0.599i)41-s + (−0.163 + 0.0946i)43-s + 0.0683·47-s + ⋯ |
Λ(s)=(=(3024s/2ΓC(s)L(s)(0.932−0.361i)Λ(2−s)
Λ(s)=(=(3024s/2ΓC(s+1/2)L(s)(0.932−0.361i)Λ(1−s)
Degree: |
2 |
Conductor: |
3024
= 24⋅33⋅7
|
Sign: |
0.932−0.361i
|
Analytic conductor: |
24.1467 |
Root analytic conductor: |
4.91393 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3024(1279,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3024, ( :1/2), 0.932−0.361i)
|
Particular Values
L(1) |
≈ |
0.6086429089 |
L(21) |
≈ |
0.6086429089 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.64+0.0987i)T |
good | 5 | 1+(1.53−0.886i)T+(2.5−4.33i)T2 |
| 11 | 1+(5.33+3.08i)T+(5.5+9.52i)T2 |
| 13 | 1+(4.60+2.65i)T+(6.5+11.2i)T2 |
| 17 | 1+(4.69−2.71i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.935+1.62i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.562+0.324i)T+(11.5−19.9i)T2 |
| 29 | 1+(−1.14−1.98i)T+(−14.5+25.1i)T2 |
| 31 | 1−10.2T+31T2 |
| 37 | 1+(−1.09+1.89i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−6.64−3.83i)T+(20.5+35.5i)T2 |
| 43 | 1+(1.07−0.620i)T+(21.5−37.2i)T2 |
| 47 | 1−0.468T+47T2 |
| 53 | 1+(−0.941−1.63i)T+(−26.5+45.8i)T2 |
| 59 | 1−9.24T+59T2 |
| 61 | 1+6.33iT−61T2 |
| 67 | 1−9.93iT−67T2 |
| 71 | 1+11.1iT−71T2 |
| 73 | 1+(4.77−2.75i)T+(36.5−63.2i)T2 |
| 79 | 1−10.5iT−79T2 |
| 83 | 1+(4.06+7.03i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−0.228−0.132i)T+(44.5+77.0i)T2 |
| 97 | 1+(12.5−7.26i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.603935125061451664772461310294, −7.979509790710904397026015094783, −7.33015232723815699259598071330, −6.57058739769086968950006434149, −5.73175547159679148079240684625, −4.93383699140421930196658559902, −3.97290186568778175550096027899, −2.82808114084507696544226741579, −2.69086286936565058744525277408, −0.50534400096554261240341129702,
0.38351496065811961921914856634, 2.33266912278815929527665996158, 2.77501669060320854075488916213, 4.21508139244432880124233376040, 4.63723014828331485090267658784, 5.50032212716550735640005567744, 6.61597598664476062314711177297, 7.20374557188469089764026763755, 7.85667673976992426227105558123, 8.626623684462106473954743054361