L(s) = 1 | + (1.33 + 2.31i)5-s + (−0.581 − 2.58i)7-s + (−0.682 + 1.18i)11-s + (−2.75 + 4.77i)13-s + (1.23 + 2.14i)17-s + (2.19 − 3.80i)19-s + (2.34 + 4.06i)23-s + (−1.05 + 1.83i)25-s + (−2.94 − 5.10i)29-s − 3.11·31-s + (5.18 − 4.78i)35-s + (−3.15 + 5.46i)37-s + (−1.38 + 2.40i)41-s + (4.87 + 8.45i)43-s − 10.0·47-s + ⋯ |
L(s) = 1 | + (0.596 + 1.03i)5-s + (−0.219 − 0.975i)7-s + (−0.205 + 0.356i)11-s + (−0.764 + 1.32i)13-s + (0.300 + 0.520i)17-s + (0.503 − 0.872i)19-s + (0.488 + 0.846i)23-s + (−0.211 + 0.366i)25-s + (−0.547 − 0.948i)29-s − 0.559·31-s + (0.877 − 0.809i)35-s + (−0.518 + 0.898i)37-s + (−0.216 + 0.375i)41-s + (0.744 + 1.28i)43-s − 1.46·47-s + ⋯ |
Λ(s)=(=(3024s/2ΓC(s)L(s)(−0.579−0.814i)Λ(2−s)
Λ(s)=(=(3024s/2ΓC(s+1/2)L(s)(−0.579−0.814i)Λ(1−s)
Degree: |
2 |
Conductor: |
3024
= 24⋅33⋅7
|
Sign: |
−0.579−0.814i
|
Analytic conductor: |
24.1467 |
Root analytic conductor: |
4.91393 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3024(2305,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3024, ( :1/2), −0.579−0.814i)
|
Particular Values
L(1) |
≈ |
1.267583182 |
L(21) |
≈ |
1.267583182 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.581+2.58i)T |
good | 5 | 1+(−1.33−2.31i)T+(−2.5+4.33i)T2 |
| 11 | 1+(0.682−1.18i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2.75−4.77i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−1.23−2.14i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.19+3.80i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.34−4.06i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.94+5.10i)T+(−14.5+25.1i)T2 |
| 31 | 1+3.11T+31T2 |
| 37 | 1+(3.15−5.46i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.38−2.40i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−4.87−8.45i)T+(−21.5+37.2i)T2 |
| 47 | 1+10.0T+47T2 |
| 53 | 1+(−1.47−2.56i)T+(−26.5+45.8i)T2 |
| 59 | 1−3.55T+59T2 |
| 61 | 1−1.32T+61T2 |
| 67 | 1+8.29T+67T2 |
| 71 | 1−12.3T+71T2 |
| 73 | 1+(1.11+1.93i)T+(−36.5+63.2i)T2 |
| 79 | 1+12.8T+79T2 |
| 83 | 1+(−5.15−8.93i)T+(−41.5+71.8i)T2 |
| 89 | 1+(7.73−13.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+(2.55+4.42i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.314542869924263319188302716049, −8.041429785512737603567459993368, −7.25136511944887082538940634988, −6.85292068613647829773260370682, −6.16906993751779257103955456633, −5.08496389946251228699718247530, −4.28427426124649796407915952941, −3.33887562874485420143445751072, −2.46987844001277422286297414051, −1.44471555125280190272201085556,
0.38160215509133737901614256665, 1.68603578340428136214318679872, 2.71584519697591607003224589904, 3.53934170048792393072348070362, 4.95968025564493667740934831280, 5.41017512758756767933005028238, 5.80639870343907328399972722449, 7.01800266878837032331893128018, 7.81973056923527748117577056319, 8.663617493232305867412811999287