L(s) = 1 | + 0.0619·5-s + (1.63 + 2.07i)7-s − 3.18·11-s + (−0.252 + 0.437i)13-s + (0.554 − 0.960i)17-s + (−0.933 − 1.61i)19-s − 6.20·23-s − 4.99·25-s + (−2.39 − 4.15i)29-s + (−1.26 − 2.19i)31-s + (0.101 + 0.128i)35-s + (−4.26 − 7.38i)37-s + (4.94 − 8.56i)41-s + (3.95 + 6.85i)43-s + (−3.29 + 5.70i)47-s + ⋯ |
L(s) = 1 | + 0.0277·5-s + (0.618 + 0.785i)7-s − 0.958·11-s + (−0.0700 + 0.121i)13-s + (0.134 − 0.233i)17-s + (−0.214 − 0.370i)19-s − 1.29·23-s − 0.999·25-s + (−0.445 − 0.770i)29-s + (−0.227 − 0.394i)31-s + (0.0171 + 0.0217i)35-s + (−0.700 − 1.21i)37-s + (0.772 − 1.33i)41-s + (0.603 + 1.04i)43-s + (−0.480 + 0.831i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5631907925\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5631907925\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.63 - 2.07i)T \) |
good | 5 | \( 1 - 0.0619T + 5T^{2} \) |
| 11 | \( 1 + 3.18T + 11T^{2} \) |
| 13 | \( 1 + (0.252 - 0.437i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.554 + 0.960i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.933 + 1.61i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 6.20T + 23T^{2} \) |
| 29 | \( 1 + (2.39 + 4.15i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.26 + 2.19i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.26 + 7.38i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.94 + 8.56i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.95 - 6.85i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.29 - 5.70i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.58 + 2.74i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.50 + 7.80i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.94 + 12.0i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.66 - 2.88i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.25T + 71T^{2} \) |
| 73 | \( 1 + (-2.07 + 3.59i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.48 - 2.57i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.17 - 3.76i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.30 - 7.44i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.27 + 5.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.116055080318452261803081069589, −8.029548248834627688766408844687, −7.04382661372079214921032994733, −5.90820322291537070320619516209, −5.54175980388129165862069021963, −4.60096538516546676673877654478, −3.74187221704104714795486959405, −2.47592529976659381951447581315, −1.94924566924866878505792627238, −0.16691512613580956005715200130,
1.36431584702309107628910382218, 2.35353197121692136123180560096, 3.54376106346066179298467621919, 4.27022764454945584899240491088, 5.18186370484878180458796471517, 5.84739012548405181660887118393, 6.83256869818640681712896976329, 7.67573923075800718512813916204, 8.054707573364911039937975423783, 8.859098040924999239905143410524