L(s) = 1 | − 2.77·5-s + (−0.855 + 2.50i)7-s − 3.43·11-s + (−0.429 − 0.743i)13-s + (0.405 + 0.701i)17-s + (−0.750 + 1.29i)19-s + 7.64·23-s + 2.68·25-s + (−3.99 + 6.92i)29-s + (−3.60 + 6.24i)31-s + (2.37 − 6.93i)35-s + (0.458 − 0.793i)37-s + (−1.67 − 2.90i)41-s + (−1.20 + 2.08i)43-s + (0.307 + 0.532i)47-s + ⋯ |
L(s) = 1 | − 1.23·5-s + (−0.323 + 0.946i)7-s − 1.03·11-s + (−0.119 − 0.206i)13-s + (0.0982 + 0.170i)17-s + (−0.172 + 0.298i)19-s + 1.59·23-s + 0.536·25-s + (−0.742 + 1.28i)29-s + (−0.647 + 1.12i)31-s + (0.400 − 1.17i)35-s + (0.0753 − 0.130i)37-s + (−0.261 − 0.453i)41-s + (−0.183 + 0.318i)43-s + (0.0448 + 0.0776i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4644934758\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4644934758\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.855 - 2.50i)T \) |
good | 5 | \( 1 + 2.77T + 5T^{2} \) |
| 11 | \( 1 + 3.43T + 11T^{2} \) |
| 13 | \( 1 + (0.429 + 0.743i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.405 - 0.701i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.750 - 1.29i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 7.64T + 23T^{2} \) |
| 29 | \( 1 + (3.99 - 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.60 - 6.24i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.458 + 0.793i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.67 + 2.90i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.20 - 2.08i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.307 - 0.532i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.31 + 10.9i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.734 - 1.27i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.71 + 9.90i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.10 + 14.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14.4T + 71T^{2} \) |
| 73 | \( 1 + (4.16 + 7.22i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.37 + 2.38i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.75 - 9.97i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.11 + 8.85i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.82 + 6.63i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.529083604262813317976861315887, −7.82885689521935491861301974244, −7.18972458715484525443789134452, −6.35360363817700056626824462735, −5.20642180922355186687848146815, −4.94020399945316667893062677987, −3.48441425701232192143207168289, −3.16125721174603284416038805409, −1.89119889171400542794475592544, −0.19746052626526666808789607401,
0.826271993036940889955331849202, 2.48405957207388267759662111628, 3.41293692900669311547935035142, 4.17205609690504987427583104414, 4.83343435894495130590835109870, 5.84583282468498298244753800591, 6.90040632735538469269498447389, 7.51632794094447743155123182430, 7.87037539470706175649253599309, 8.818791943884103531297732973245