L(s) = 1 | + (−1.76 + 0.896i)3-s + (0.587 − 0.809i)4-s + (−0.951 − 0.309i)5-s + (1.70 − 2.34i)9-s + (−0.309 + 1.95i)12-s + (1.95 − 0.309i)15-s + (−0.309 − 0.951i)16-s + (−0.809 + 0.587i)20-s + (−0.142 − 0.896i)23-s + (0.809 + 0.587i)25-s + (−0.587 + 3.71i)27-s − 1.17·31-s + (−0.896 − 2.76i)36-s + (0.642 + 1.26i)37-s + (−2.34 + 1.70i)45-s + ⋯ |
L(s) = 1 | + (−1.76 + 0.896i)3-s + (0.587 − 0.809i)4-s + (−0.951 − 0.309i)5-s + (1.70 − 2.34i)9-s + (−0.309 + 1.95i)12-s + (1.95 − 0.309i)15-s + (−0.309 − 0.951i)16-s + (−0.809 + 0.587i)20-s + (−0.142 − 0.896i)23-s + (0.809 + 0.587i)25-s + (−0.587 + 3.71i)27-s − 1.17·31-s + (−0.896 − 2.76i)36-s + (0.642 + 1.26i)37-s + (−2.34 + 1.70i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.668 + 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.668 + 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3072734385\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3072734385\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.951 + 0.309i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 3 | \( 1 + (1.76 - 0.896i)T + (0.587 - 0.809i)T^{2} \) |
| 7 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 13 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 17 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.142 + 0.896i)T + (-0.951 + 0.309i)T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + 1.17T + T^{2} \) |
| 37 | \( 1 + (-0.642 - 1.26i)T + (-0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.642 + 1.26i)T + (-0.587 + 0.809i)T^{2} \) |
| 53 | \( 1 + (0.309 + 0.0489i)T + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (1.11 + 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 + 1.58i)T + (-0.587 + 0.809i)T^{2} \) |
| 71 | \( 1 + 1.61T + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.0489 - 0.309i)T + (-0.951 - 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.878536486679409554971652817523, −7.63735097661256490142887798787, −6.83912157112332366517385819078, −6.26111182773067262562828093667, −5.50821864281541697263859581961, −4.82359681263023660097617985151, −4.26778561696593720896333518597, −3.23202721853379568557912414901, −1.44253445018441261701359419537, −0.25774165824788508797429561501,
1.39883454688163023224410367790, 2.54927966826502893041674817878, 3.79321238149767573855030848731, 4.55429348120699320342407484457, 5.60427961016837781646466088185, 6.24191372362962312400557554478, 7.03848314338901835657815378345, 7.53038497800988193487881757929, 7.87318221405585733804441047920, 9.038973818274955811742649699835