Properties

Label 2-3040-760.189-c0-0-3
Degree $2$
Conductor $3040$
Sign $0.382 - 0.923i$
Analytic cond. $1.51715$
Root an. cond. $1.23172$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.765i·3-s i·5-s + 0.414·9-s + 1.41i·11-s + 1.84i·13-s + 0.765·15-s i·19-s − 25-s + 1.08i·27-s − 1.08·33-s − 0.765i·37-s − 1.41·39-s − 0.414i·45-s + 49-s + 0.765i·53-s + ⋯
L(s)  = 1  + 0.765i·3-s i·5-s + 0.414·9-s + 1.41i·11-s + 1.84i·13-s + 0.765·15-s i·19-s − 25-s + 1.08i·27-s − 1.08·33-s − 0.765i·37-s − 1.41·39-s − 0.414i·45-s + 49-s + 0.765i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $0.382 - 0.923i$
Analytic conductor: \(1.51715\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (1329, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :0),\ 0.382 - 0.923i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.254342720\)
\(L(\frac12)\) \(\approx\) \(1.254342720\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + iT \)
19 \( 1 + iT \)
good3 \( 1 - 0.765iT - T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - 1.41iT - T^{2} \)
13 \( 1 - 1.84iT - T^{2} \)
17 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + 0.765iT - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - 0.765iT - T^{2} \)
59 \( 1 + T^{2} \)
61 \( 1 - 1.41iT - T^{2} \)
67 \( 1 - 1.84iT - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - 1.84T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.129748814033673208581373831884, −8.637151050097844366503537064428, −7.26114097678814148834386054740, −7.09177978460601672414286812082, −5.85736233283713026343575168047, −4.84121552523362897590967111303, −4.43166052174304919375379569122, −3.93962004717039260350182385249, −2.34457006809601763802264094532, −1.45958532729500536077602201562, 0.835846983054331114201909965002, 2.14582435379029483008954824290, 3.18801086118079585636251968137, 3.65158255643870189561669688461, 5.10661096026082472519931247064, 6.02637728455404333475087028259, 6.35701216263126749130982312605, 7.38982409545786359463882144696, 7.924970340283411325417645668528, 8.411165588497022306453135833147

Graph of the $Z$-function along the critical line