L(s) = 1 | + 0.765i·3-s − i·5-s + 0.414·9-s + 1.41i·11-s + 1.84i·13-s + 0.765·15-s − i·19-s − 25-s + 1.08i·27-s − 1.08·33-s − 0.765i·37-s − 1.41·39-s − 0.414i·45-s + 49-s + 0.765i·53-s + ⋯ |
L(s) = 1 | + 0.765i·3-s − i·5-s + 0.414·9-s + 1.41i·11-s + 1.84i·13-s + 0.765·15-s − i·19-s − 25-s + 1.08i·27-s − 1.08·33-s − 0.765i·37-s − 1.41·39-s − 0.414i·45-s + 49-s + 0.765i·53-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.382−0.923i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.382−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.382−0.923i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1329,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.382−0.923i)
|
Particular Values
L(21) |
≈ |
1.254342720 |
L(21) |
≈ |
1.254342720 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+iT |
| 19 | 1+iT |
good | 3 | 1−0.765iT−T2 |
| 7 | 1−T2 |
| 11 | 1−1.41iT−T2 |
| 13 | 1−1.84iT−T2 |
| 17 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+0.765iT−T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1−T2 |
| 53 | 1−0.765iT−T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1−1.84iT−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1−1.84T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.129748814033673208581373831884, −8.637151050097844366503537064428, −7.26114097678814148834386054740, −7.09177978460601672414286812082, −5.85736233283713026343575168047, −4.84121552523362897590967111303, −4.43166052174304919375379569122, −3.93962004717039260350182385249, −2.34457006809601763802264094532, −1.45958532729500536077602201562,
0.835846983054331114201909965002, 2.14582435379029483008954824290, 3.18801086118079585636251968137, 3.65158255643870189561669688461, 5.10661096026082472519931247064, 6.02637728455404333475087028259, 6.35701216263126749130982312605, 7.38982409545786359463882144696, 7.924970340283411325417645668528, 8.411165588497022306453135833147