L(s) = 1 | + (−0.773 − 0.634i)2-s + (−0.0750 − 0.181i)3-s + (0.195 + 0.980i)4-s + (−0.923 − 0.382i)5-s + (−0.0569 + 0.187i)6-s + (0.471 − 0.881i)8-s + (0.679 − 0.679i)9-s + (0.471 + 0.881i)10-s + (0.425 − 1.02i)11-s + (0.162 − 0.108i)12-s + (−0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 + 0.382i)16-s + (−0.956 + 0.0942i)18-s + (0.923 − 0.382i)19-s + (0.195 − 0.980i)20-s + ⋯ |
L(s) = 1 | + (−0.773 − 0.634i)2-s + (−0.0750 − 0.181i)3-s + (0.195 + 0.980i)4-s + (−0.923 − 0.382i)5-s + (−0.0569 + 0.187i)6-s + (0.471 − 0.881i)8-s + (0.679 − 0.679i)9-s + (0.471 + 0.881i)10-s + (0.425 − 1.02i)11-s + (0.162 − 0.108i)12-s + (−0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 + 0.382i)16-s + (−0.956 + 0.0942i)18-s + (0.923 − 0.382i)19-s + (0.195 − 0.980i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.773+0.634i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.773+0.634i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.773+0.634i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(2469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), −0.773+0.634i)
|
Particular Values
L(21) |
≈ |
0.6184666396 |
L(21) |
≈ |
0.6184666396 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.773+0.634i)T |
| 5 | 1+(0.923+0.382i)T |
| 19 | 1+(−0.923+0.382i)T |
good | 3 | 1+(0.0750+0.181i)T+(−0.707+0.707i)T2 |
| 7 | 1−iT2 |
| 11 | 1+(−0.425+1.02i)T+(−0.707−0.707i)T2 |
| 13 | 1+(0.536−0.222i)T+(0.707−0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+(0.707−0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(1.17+0.485i)T+(0.707+0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(0.707+0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.761+1.83i)T+(−0.707−0.707i)T2 |
| 59 | 1+(−0.707−0.707i)T2 |
| 61 | 1+(0.636+1.53i)T+(−0.707+0.707i)T2 |
| 67 | 1+(−0.674−1.62i)T+(−0.707+0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.707+0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1+1.91T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.616859716811468410627119277363, −8.062423296448466755143705682347, −7.11608615303725494339779635000, −6.82608175657669909926269479836, −5.51026854067522384188121339570, −4.40454437397199797569210489640, −3.68782658223215972166364959834, −3.00039716687579371709103869834, −1.56614756203313262153902540699, −0.55740925441364921504112373537,
1.38411054141067054627073567722, 2.52290824605684265291311444625, 3.84408869033054187005796502001, 4.70989379598154054300691940479, 5.32064662661404208474620166403, 6.48072661250551358605524981584, 7.29660049694875678133209034738, 7.47398474399960117105401500739, 8.289687694605314470214986650450, 9.171318352709536925050673513126