L(s) = 1 | + (−0.773 − 0.634i)2-s + (−0.0750 − 0.181i)3-s + (0.195 + 0.980i)4-s + (−0.923 − 0.382i)5-s + (−0.0569 + 0.187i)6-s + (0.471 − 0.881i)8-s + (0.679 − 0.679i)9-s + (0.471 + 0.881i)10-s + (0.425 − 1.02i)11-s + (0.162 − 0.108i)12-s + (−0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 + 0.382i)16-s + (−0.956 + 0.0942i)18-s + (0.923 − 0.382i)19-s + (0.195 − 0.980i)20-s + ⋯ |
L(s) = 1 | + (−0.773 − 0.634i)2-s + (−0.0750 − 0.181i)3-s + (0.195 + 0.980i)4-s + (−0.923 − 0.382i)5-s + (−0.0569 + 0.187i)6-s + (0.471 − 0.881i)8-s + (0.679 − 0.679i)9-s + (0.471 + 0.881i)10-s + (0.425 − 1.02i)11-s + (0.162 − 0.108i)12-s + (−0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 + 0.382i)16-s + (−0.956 + 0.0942i)18-s + (0.923 − 0.382i)19-s + (0.195 − 0.980i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6184666396\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6184666396\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.773 + 0.634i)T \) |
| 5 | \( 1 + (0.923 + 0.382i)T \) |
| 19 | \( 1 + (-0.923 + 0.382i)T \) |
good | 3 | \( 1 + (0.0750 + 0.181i)T + (-0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-0.425 + 1.02i)T + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (0.536 - 0.222i)T + (0.707 - 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (1.17 + 0.485i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.761 + 1.83i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (0.636 + 1.53i)T + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + (-0.674 - 1.62i)T + (-0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + 1.91T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.616859716811468410627119277363, −8.062423296448466755143705682347, −7.11608615303725494339779635000, −6.82608175657669909926269479836, −5.51026854067522384188121339570, −4.40454437397199797569210489640, −3.68782658223215972166364959834, −3.00039716687579371709103869834, −1.56614756203313262153902540699, −0.55740925441364921504112373537,
1.38411054141067054627073567722, 2.52290824605684265291311444625, 3.84408869033054187005796502001, 4.70989379598154054300691940479, 5.32064662661404208474620166403, 6.48072661250551358605524981584, 7.29660049694875678133209034738, 7.47398474399960117105401500739, 8.289687694605314470214986650450, 9.171318352709536925050673513126