Properties

Label 2-3040-3040.2469-c0-0-6
Degree $2$
Conductor $3040$
Sign $-0.773 + 0.634i$
Analytic cond. $1.51715$
Root an. cond. $1.23172$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.773 − 0.634i)2-s + (−0.0750 − 0.181i)3-s + (0.195 + 0.980i)4-s + (−0.923 − 0.382i)5-s + (−0.0569 + 0.187i)6-s + (0.471 − 0.881i)8-s + (0.679 − 0.679i)9-s + (0.471 + 0.881i)10-s + (0.425 − 1.02i)11-s + (0.162 − 0.108i)12-s + (−0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 + 0.382i)16-s + (−0.956 + 0.0942i)18-s + (0.923 − 0.382i)19-s + (0.195 − 0.980i)20-s + ⋯
L(s)  = 1  + (−0.773 − 0.634i)2-s + (−0.0750 − 0.181i)3-s + (0.195 + 0.980i)4-s + (−0.923 − 0.382i)5-s + (−0.0569 + 0.187i)6-s + (0.471 − 0.881i)8-s + (0.679 − 0.679i)9-s + (0.471 + 0.881i)10-s + (0.425 − 1.02i)11-s + (0.162 − 0.108i)12-s + (−0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 + 0.382i)16-s + (−0.956 + 0.0942i)18-s + (0.923 − 0.382i)19-s + (0.195 − 0.980i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $-0.773 + 0.634i$
Analytic conductor: \(1.51715\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (2469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :0),\ -0.773 + 0.634i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6184666396\)
\(L(\frac12)\) \(\approx\) \(0.6184666396\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.773 + 0.634i)T \)
5 \( 1 + (0.923 + 0.382i)T \)
19 \( 1 + (-0.923 + 0.382i)T \)
good3 \( 1 + (0.0750 + 0.181i)T + (-0.707 + 0.707i)T^{2} \)
7 \( 1 - iT^{2} \)
11 \( 1 + (-0.425 + 1.02i)T + (-0.707 - 0.707i)T^{2} \)
13 \( 1 + (0.536 - 0.222i)T + (0.707 - 0.707i)T^{2} \)
17 \( 1 + T^{2} \)
23 \( 1 + iT^{2} \)
29 \( 1 + (0.707 - 0.707i)T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (1.17 + 0.485i)T + (0.707 + 0.707i)T^{2} \)
41 \( 1 + iT^{2} \)
43 \( 1 + (0.707 + 0.707i)T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + (-0.761 + 1.83i)T + (-0.707 - 0.707i)T^{2} \)
59 \( 1 + (-0.707 - 0.707i)T^{2} \)
61 \( 1 + (0.636 + 1.53i)T + (-0.707 + 0.707i)T^{2} \)
67 \( 1 + (-0.674 - 1.62i)T + (-0.707 + 0.707i)T^{2} \)
71 \( 1 - iT^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + (-0.707 + 0.707i)T^{2} \)
89 \( 1 - iT^{2} \)
97 \( 1 + 1.91T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.616859716811468410627119277363, −8.062423296448466755143705682347, −7.11608615303725494339779635000, −6.82608175657669909926269479836, −5.51026854067522384188121339570, −4.40454437397199797569210489640, −3.68782658223215972166364959834, −3.00039716687579371709103869834, −1.56614756203313262153902540699, −0.55740925441364921504112373537, 1.38411054141067054627073567722, 2.52290824605684265291311444625, 3.84408869033054187005796502001, 4.70989379598154054300691940479, 5.32064662661404208474620166403, 6.48072661250551358605524981584, 7.29660049694875678133209034738, 7.47398474399960117105401500739, 8.289687694605314470214986650450, 9.171318352709536925050673513126

Graph of the $Z$-function along the critical line