Properties

Label 2-3042-13.12-c1-0-16
Degree $2$
Conductor $3042$
Sign $-0.554 - 0.832i$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + 2i·5-s − 2i·7-s i·8-s − 2·10-s − 4i·11-s + 2·14-s + 16-s + 6i·19-s − 2i·20-s + 4·22-s − 4·23-s + 25-s + 2i·28-s − 8·29-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.894i·5-s − 0.755i·7-s − 0.353i·8-s − 0.632·10-s − 1.20i·11-s + 0.534·14-s + 0.250·16-s + 1.37i·19-s − 0.447i·20-s + 0.852·22-s − 0.834·23-s + 0.200·25-s + 0.377i·28-s − 1.48·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $-0.554 - 0.832i$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3042} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ -0.554 - 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.328409987\)
\(L(\frac12)\) \(\approx\) \(1.328409987\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2iT - 5T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 4iT - 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 - 6iT - 37T^{2} \)
41 \( 1 + 6iT - 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 - 12T + 53T^{2} \)
59 \( 1 - 4iT - 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 2iT - 67T^{2} \)
71 \( 1 - 16iT - 71T^{2} \)
73 \( 1 - 14iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 6iT - 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.736306040921971567778244045865, −8.130331027313402014022915867052, −7.35509082529192321217101711958, −6.83997034662755629319492260281, −5.88733544450536283160453938632, −5.53352626548846282311455844000, −4.04590050970486042381792713437, −3.70538416450980619881243672750, −2.57990884616682223021691345415, −1.06295113737662403086391330604, 0.47953625002604668325973577242, 1.88266447847373429979879791430, 2.45380824021374992298400825114, 3.74982092607709746520763658419, 4.56898885540164786180075272835, 5.18099701351502225675308264976, 5.95056011307064613638986078545, 7.10307472356972986103340027609, 7.80317539885099716024793577809, 8.848216874534899956306174034671

Graph of the $Z$-function along the critical line