L(s) = 1 | + i·2-s − 4-s + 2i·5-s − 2i·7-s − i·8-s − 2·10-s − 4i·11-s + 2·14-s + 16-s + 6i·19-s − 2i·20-s + 4·22-s − 4·23-s + 25-s + 2i·28-s − 8·29-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.894i·5-s − 0.755i·7-s − 0.353i·8-s − 0.632·10-s − 1.20i·11-s + 0.534·14-s + 0.250·16-s + 1.37i·19-s − 0.447i·20-s + 0.852·22-s − 0.834·23-s + 0.200·25-s + 0.377i·28-s − 1.48·29-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)(−0.554−0.832i)Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)(−0.554−0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
3042
= 2⋅32⋅132
|
Sign: |
−0.554−0.832i
|
Analytic conductor: |
24.2904 |
Root analytic conductor: |
4.92853 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3042(1351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3042, ( :1/2), −0.554−0.832i)
|
Particular Values
L(1) |
≈ |
1.328409987 |
L(21) |
≈ |
1.328409987 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1−2iT−5T2 |
| 7 | 1+2iT−7T2 |
| 11 | 1+4iT−11T2 |
| 17 | 1+17T2 |
| 19 | 1−6iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+8T+29T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+6iT−41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1−12T+53T2 |
| 59 | 1−4iT−59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1−2iT−67T2 |
| 71 | 1−16iT−71T2 |
| 73 | 1−14iT−73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+6iT−89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.736306040921971567778244045865, −8.130331027313402014022915867052, −7.35509082529192321217101711958, −6.83997034662755629319492260281, −5.88733544450536283160453938632, −5.53352626548846282311455844000, −4.04590050970486042381792713437, −3.70538416450980619881243672750, −2.57990884616682223021691345415, −1.06295113737662403086391330604,
0.47953625002604668325973577242, 1.88266447847373429979879791430, 2.45380824021374992298400825114, 3.74982092607709746520763658419, 4.56898885540164786180075272835, 5.18099701351502225675308264976, 5.95056011307064613638986078545, 7.10307472356972986103340027609, 7.80317539885099716024793577809, 8.848216874534899956306174034671