L(s) = 1 | + (−0.923 + 0.382i)3-s + (0.541 + 0.541i)7-s + (0.707 − 0.707i)9-s + (−0.707 − 1.70i)13-s + (−0.541 − 1.30i)19-s + (−0.707 − 0.292i)21-s + (−0.707 − 0.707i)25-s + (−0.382 + 0.923i)27-s − 1.84·31-s + (0.292 − 0.707i)37-s + (1.30 + 1.30i)39-s + (1.30 + 0.541i)43-s − 0.414i·49-s + (1 + 0.999i)57-s + (−1.70 + 0.707i)61-s + ⋯ |
L(s) = 1 | + (−0.923 + 0.382i)3-s + (0.541 + 0.541i)7-s + (0.707 − 0.707i)9-s + (−0.707 − 1.70i)13-s + (−0.541 − 1.30i)19-s + (−0.707 − 0.292i)21-s + (−0.707 − 0.707i)25-s + (−0.382 + 0.923i)27-s − 1.84·31-s + (0.292 − 0.707i)37-s + (1.30 + 1.30i)39-s + (1.30 + 0.541i)43-s − 0.414i·49-s + (1 + 0.999i)57-s + (−1.70 + 0.707i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.195 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.195 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6612379144\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6612379144\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.923 - 0.382i)T \) |
good | 5 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.541 + 1.30i)T + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + 1.84T + T^{2} \) |
| 37 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-1.30 - 0.541i)T + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1 + i)T - iT^{2} \) |
| 79 | \( 1 + 1.84iT - T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.895892851277243613738503742224, −7.81232223906855716815647088265, −7.32209781746216371024442291475, −6.22390029367628130793380713291, −5.60063527218153162192022841988, −4.99709570103875560136797441813, −4.24243479304154593103118792319, −3.10576577067648329037318044706, −2.06140395269720501797867106065, −0.45723127998124132989411076593,
1.47189524841912003188277277795, 2.11571277452877078173072909544, 3.84853687803841724122622008284, 4.39550369548282577741616021877, 5.28190116925457677210665824538, 6.03725789322019750956473829842, 6.85355828196574634868640017405, 7.44665924461593824074960436587, 8.048065270817418798924815667615, 9.197234810703116419437091083555