L(s) = 1 | + (−0.923 + 0.382i)3-s + (0.541 + 0.541i)7-s + (0.707 − 0.707i)9-s + (−0.707 − 1.70i)13-s + (−0.541 − 1.30i)19-s + (−0.707 − 0.292i)21-s + (−0.707 − 0.707i)25-s + (−0.382 + 0.923i)27-s − 1.84·31-s + (0.292 − 0.707i)37-s + (1.30 + 1.30i)39-s + (1.30 + 0.541i)43-s − 0.414i·49-s + (1 + 0.999i)57-s + (−1.70 + 0.707i)61-s + ⋯ |
L(s) = 1 | + (−0.923 + 0.382i)3-s + (0.541 + 0.541i)7-s + (0.707 − 0.707i)9-s + (−0.707 − 1.70i)13-s + (−0.541 − 1.30i)19-s + (−0.707 − 0.292i)21-s + (−0.707 − 0.707i)25-s + (−0.382 + 0.923i)27-s − 1.84·31-s + (0.292 − 0.707i)37-s + (1.30 + 1.30i)39-s + (1.30 + 0.541i)43-s − 0.414i·49-s + (1 + 0.999i)57-s + (−1.70 + 0.707i)61-s + ⋯ |
Λ(s)=(=(3072s/2ΓC(s)L(s)(0.195+0.980i)Λ(1−s)
Λ(s)=(=(3072s/2ΓC(s)L(s)(0.195+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
3072
= 210⋅3
|
Sign: |
0.195+0.980i
|
Analytic conductor: |
1.53312 |
Root analytic conductor: |
1.23819 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3072(1409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3072, ( :0), 0.195+0.980i)
|
Particular Values
L(21) |
≈ |
0.6612379144 |
L(21) |
≈ |
0.6612379144 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.923−0.382i)T |
good | 5 | 1+(0.707+0.707i)T2 |
| 7 | 1+(−0.541−0.541i)T+iT2 |
| 11 | 1+(−0.707−0.707i)T2 |
| 13 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 17 | 1+T2 |
| 19 | 1+(0.541+1.30i)T+(−0.707+0.707i)T2 |
| 23 | 1+iT2 |
| 29 | 1+(−0.707+0.707i)T2 |
| 31 | 1+1.84T+T2 |
| 37 | 1+(−0.292+0.707i)T+(−0.707−0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−1.30−0.541i)T+(0.707+0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.707−0.707i)T2 |
| 59 | 1+(0.707+0.707i)T2 |
| 61 | 1+(1.70−0.707i)T+(0.707−0.707i)T2 |
| 67 | 1+(0.707−0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1+(−1+i)T−iT2 |
| 79 | 1+1.84iT−T2 |
| 83 | 1+(0.707−0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1−1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.895892851277243613738503742224, −7.81232223906855716815647088265, −7.32209781746216371024442291475, −6.22390029367628130793380713291, −5.60063527218153162192022841988, −4.99709570103875560136797441813, −4.24243479304154593103118792319, −3.10576577067648329037318044706, −2.06140395269720501797867106065, −0.45723127998124132989411076593,
1.47189524841912003188277277795, 2.11571277452877078173072909544, 3.84853687803841724122622008284, 4.39550369548282577741616021877, 5.28190116925457677210665824538, 6.03725789322019750956473829842, 6.85355828196574634868640017405, 7.44665924461593824074960436587, 8.048065270817418798924815667615, 9.197234810703116419437091083555