L(s) = 1 | + (−0.382 + 0.923i)3-s + (1.30 − 1.30i)7-s + (−0.707 − 0.707i)9-s + (0.707 + 0.292i)13-s + (−1.30 − 0.541i)19-s + (0.707 + 1.70i)21-s + (0.707 − 0.707i)25-s + (0.923 − 0.382i)27-s − 0.765·31-s + (1.70 − 0.707i)37-s + (−0.541 + 0.541i)39-s + (−0.541 − 1.30i)43-s − 2.41i·49-s + (1 − 0.999i)57-s + (−0.292 + 0.707i)61-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)3-s + (1.30 − 1.30i)7-s + (−0.707 − 0.707i)9-s + (0.707 + 0.292i)13-s + (−1.30 − 0.541i)19-s + (0.707 + 1.70i)21-s + (0.707 − 0.707i)25-s + (0.923 − 0.382i)27-s − 0.765·31-s + (1.70 − 0.707i)37-s + (−0.541 + 0.541i)39-s + (−0.541 − 1.30i)43-s − 2.41i·49-s + (1 − 0.999i)57-s + (−0.292 + 0.707i)61-s + ⋯ |
Λ(s)=(=(3072s/2ΓC(s)L(s)(0.980+0.195i)Λ(1−s)
Λ(s)=(=(3072s/2ΓC(s)L(s)(0.980+0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
3072
= 210⋅3
|
Sign: |
0.980+0.195i
|
Analytic conductor: |
1.53312 |
Root analytic conductor: |
1.23819 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3072(2177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3072, ( :0), 0.980+0.195i)
|
Particular Values
L(21) |
≈ |
1.225298453 |
L(21) |
≈ |
1.225298453 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.382−0.923i)T |
good | 5 | 1+(−0.707+0.707i)T2 |
| 7 | 1+(−1.30+1.30i)T−iT2 |
| 11 | 1+(0.707−0.707i)T2 |
| 13 | 1+(−0.707−0.292i)T+(0.707+0.707i)T2 |
| 17 | 1+T2 |
| 19 | 1+(1.30+0.541i)T+(0.707+0.707i)T2 |
| 23 | 1−iT2 |
| 29 | 1+(0.707+0.707i)T2 |
| 31 | 1+0.765T+T2 |
| 37 | 1+(−1.70+0.707i)T+(0.707−0.707i)T2 |
| 41 | 1−iT2 |
| 43 | 1+(0.541+1.30i)T+(−0.707+0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(0.707−0.707i)T2 |
| 59 | 1+(−0.707+0.707i)T2 |
| 61 | 1+(0.292−0.707i)T+(−0.707−0.707i)T2 |
| 67 | 1+(−0.707−0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1+(−1−i)T+iT2 |
| 79 | 1−0.765iT−T2 |
| 83 | 1+(−0.707−0.707i)T2 |
| 89 | 1+iT2 |
| 97 | 1+1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.718797723963604676414847655392, −8.349459784305606680634166758709, −7.33132605236286392923352648152, −6.60430840550760499705570948533, −5.71121093011620643453870735485, −4.76220741261919322360261060431, −4.28124740498994560565090715496, −3.66028767285828563451165248798, −2.24303292532619186212559181329, −0.887789533032539440528755308945,
1.38130488350925638453659598462, 2.09517378355094455193726919943, 3.05974114651057671698286123068, 4.49179474851744499286368012765, 5.21422670791467994645814252381, 5.96622035073771262403099033054, 6.45452385160577013397034904537, 7.60261226699776712865457861979, 8.182645539777322994567586466522, 8.613351480286552311731129771381