Properties

Label 2-3072-96.77-c0-0-4
Degree $2$
Conductor $3072$
Sign $0.980 + 0.195i$
Analytic cond. $1.53312$
Root an. cond. $1.23819$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.382 + 0.923i)3-s + (1.30 − 1.30i)7-s + (−0.707 − 0.707i)9-s + (0.707 + 0.292i)13-s + (−1.30 − 0.541i)19-s + (0.707 + 1.70i)21-s + (0.707 − 0.707i)25-s + (0.923 − 0.382i)27-s − 0.765·31-s + (1.70 − 0.707i)37-s + (−0.541 + 0.541i)39-s + (−0.541 − 1.30i)43-s − 2.41i·49-s + (1 − 0.999i)57-s + (−0.292 + 0.707i)61-s + ⋯
L(s)  = 1  + (−0.382 + 0.923i)3-s + (1.30 − 1.30i)7-s + (−0.707 − 0.707i)9-s + (0.707 + 0.292i)13-s + (−1.30 − 0.541i)19-s + (0.707 + 1.70i)21-s + (0.707 − 0.707i)25-s + (0.923 − 0.382i)27-s − 0.765·31-s + (1.70 − 0.707i)37-s + (−0.541 + 0.541i)39-s + (−0.541 − 1.30i)43-s − 2.41i·49-s + (1 − 0.999i)57-s + (−0.292 + 0.707i)61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3072\)    =    \(2^{10} \cdot 3\)
Sign: $0.980 + 0.195i$
Analytic conductor: \(1.53312\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3072} (2177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3072,\ (\ :0),\ 0.980 + 0.195i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.225298453\)
\(L(\frac12)\) \(\approx\) \(1.225298453\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.382 - 0.923i)T \)
good5 \( 1 + (-0.707 + 0.707i)T^{2} \)
7 \( 1 + (-1.30 + 1.30i)T - iT^{2} \)
11 \( 1 + (0.707 - 0.707i)T^{2} \)
13 \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 + (1.30 + 0.541i)T + (0.707 + 0.707i)T^{2} \)
23 \( 1 - iT^{2} \)
29 \( 1 + (0.707 + 0.707i)T^{2} \)
31 \( 1 + 0.765T + T^{2} \)
37 \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \)
41 \( 1 - iT^{2} \)
43 \( 1 + (0.541 + 1.30i)T + (-0.707 + 0.707i)T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + (0.707 - 0.707i)T^{2} \)
59 \( 1 + (-0.707 + 0.707i)T^{2} \)
61 \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \)
67 \( 1 + (-0.707 - 0.707i)T^{2} \)
71 \( 1 + iT^{2} \)
73 \( 1 + (-1 - i)T + iT^{2} \)
79 \( 1 - 0.765iT - T^{2} \)
83 \( 1 + (-0.707 - 0.707i)T^{2} \)
89 \( 1 + iT^{2} \)
97 \( 1 + 1.41T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.718797723963604676414847655392, −8.349459784305606680634166758709, −7.33132605236286392923352648152, −6.60430840550760499705570948533, −5.71121093011620643453870735485, −4.76220741261919322360261060431, −4.28124740498994560565090715496, −3.66028767285828563451165248798, −2.24303292532619186212559181329, −0.887789533032539440528755308945, 1.38130488350925638453659598462, 2.09517378355094455193726919943, 3.05974114651057671698286123068, 4.49179474851744499286368012765, 5.21422670791467994645814252381, 5.96622035073771262403099033054, 6.45452385160577013397034904537, 7.60261226699776712865457861979, 8.182645539777322994567586466522, 8.613351480286552311731129771381

Graph of the $Z$-function along the critical line