L(s) = 1 | + (0.963 − 1.03i)2-s + 3.04i·3-s + (−0.145 − 1.99i)4-s + 2.80·5-s + (3.15 + 2.93i)6-s + 7-s + (−2.20 − 1.77i)8-s − 6.29·9-s + (2.70 − 2.90i)10-s + (0.755 + 3.22i)11-s + (6.08 − 0.442i)12-s − 5.37i·13-s + (0.963 − 1.03i)14-s + 8.55i·15-s + (−3.95 + 0.578i)16-s + 5.95i·17-s + ⋯ |
L(s) = 1 | + (0.680 − 0.732i)2-s + 1.76i·3-s + (−0.0725 − 0.997i)4-s + 1.25·5-s + (1.28 + 1.19i)6-s + 0.377·7-s + (−0.779 − 0.626i)8-s − 2.09·9-s + (0.854 − 0.918i)10-s + (0.227 + 0.973i)11-s + (1.75 − 0.127i)12-s − 1.49i·13-s + (0.257 − 0.276i)14-s + 2.20i·15-s + (−0.989 + 0.144i)16-s + 1.44i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.08417 + 0.317665i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08417 + 0.317665i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.963 + 1.03i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (-0.755 - 3.22i)T \) |
good | 3 | \( 1 - 3.04iT - 3T^{2} \) |
| 5 | \( 1 - 2.80T + 5T^{2} \) |
| 13 | \( 1 + 5.37iT - 13T^{2} \) |
| 17 | \( 1 - 5.95iT - 17T^{2} \) |
| 19 | \( 1 + 0.325T + 19T^{2} \) |
| 23 | \( 1 + 1.56iT - 23T^{2} \) |
| 29 | \( 1 + 4.39iT - 29T^{2} \) |
| 31 | \( 1 + 3.00iT - 31T^{2} \) |
| 37 | \( 1 - 4.11T + 37T^{2} \) |
| 41 | \( 1 + 1.41iT - 41T^{2} \) |
| 43 | \( 1 + 12.4T + 43T^{2} \) |
| 47 | \( 1 + 9.32iT - 47T^{2} \) |
| 53 | \( 1 + 4.91T + 53T^{2} \) |
| 59 | \( 1 - 4.96iT - 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 2.71iT - 67T^{2} \) |
| 71 | \( 1 + 1.79iT - 71T^{2} \) |
| 73 | \( 1 - 7.05iT - 73T^{2} \) |
| 79 | \( 1 + 1.63T + 79T^{2} \) |
| 83 | \( 1 + 5.50T + 83T^{2} \) |
| 89 | \( 1 - 5.20T + 89T^{2} \) |
| 97 | \( 1 - 16.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.51585837304928823035451211085, −10.46008384927860398426874927852, −10.15591256628819277011359826699, −9.515558828995429433634891825030, −8.374183170864236601430425261747, −6.17890545247397969438388876168, −5.42431734298807919593719511037, −4.58523986663970937311307261881, −3.51599209506219783550498593221, −2.14619786898709527752320022483,
1.68147599820180683789020796450, 2.92427075267274348434556753758, 4.98711659462077989702910159210, 6.04131975082701357774111931637, 6.64214564959893221475654461748, 7.44897325795429686652267710160, 8.577007646200970247258632794949, 9.329250777860533703563289912222, 11.33841197973281248633552464724, 11.82351702081016615825272758926