L(s) = 1 | + (0.963 − 1.03i)2-s + 3.04i·3-s + (−0.145 − 1.99i)4-s + 2.80·5-s + (3.15 + 2.93i)6-s + 7-s + (−2.20 − 1.77i)8-s − 6.29·9-s + (2.70 − 2.90i)10-s + (0.755 + 3.22i)11-s + (6.08 − 0.442i)12-s − 5.37i·13-s + (0.963 − 1.03i)14-s + 8.55i·15-s + (−3.95 + 0.578i)16-s + 5.95i·17-s + ⋯ |
L(s) = 1 | + (0.680 − 0.732i)2-s + 1.76i·3-s + (−0.0725 − 0.997i)4-s + 1.25·5-s + (1.28 + 1.19i)6-s + 0.377·7-s + (−0.779 − 0.626i)8-s − 2.09·9-s + (0.854 − 0.918i)10-s + (0.227 + 0.973i)11-s + (1.75 − 0.127i)12-s − 1.49i·13-s + (0.257 − 0.276i)14-s + 2.20i·15-s + (−0.989 + 0.144i)16-s + 1.44i·17-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(0.954−0.297i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(0.954−0.297i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
0.954−0.297i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), 0.954−0.297i)
|
Particular Values
L(1) |
≈ |
2.08417+0.317665i |
L(21) |
≈ |
2.08417+0.317665i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.963+1.03i)T |
| 7 | 1−T |
| 11 | 1+(−0.755−3.22i)T |
good | 3 | 1−3.04iT−3T2 |
| 5 | 1−2.80T+5T2 |
| 13 | 1+5.37iT−13T2 |
| 17 | 1−5.95iT−17T2 |
| 19 | 1+0.325T+19T2 |
| 23 | 1+1.56iT−23T2 |
| 29 | 1+4.39iT−29T2 |
| 31 | 1+3.00iT−31T2 |
| 37 | 1−4.11T+37T2 |
| 41 | 1+1.41iT−41T2 |
| 43 | 1+12.4T+43T2 |
| 47 | 1+9.32iT−47T2 |
| 53 | 1+4.91T+53T2 |
| 59 | 1−4.96iT−59T2 |
| 61 | 1+10.7iT−61T2 |
| 67 | 1−2.71iT−67T2 |
| 71 | 1+1.79iT−71T2 |
| 73 | 1−7.05iT−73T2 |
| 79 | 1+1.63T+79T2 |
| 83 | 1+5.50T+83T2 |
| 89 | 1−5.20T+89T2 |
| 97 | 1−16.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51585837304928823035451211085, −10.46008384927860398426874927852, −10.15591256628819277011359826699, −9.515558828995429433634891825030, −8.374183170864236601430425261747, −6.17890545247397969438388876168, −5.42431734298807919593719511037, −4.58523986663970937311307261881, −3.51599209506219783550498593221, −2.14619786898709527752320022483,
1.68147599820180683789020796450, 2.92427075267274348434556753758, 4.98711659462077989702910159210, 6.04131975082701357774111931637, 6.64214564959893221475654461748, 7.44897325795429686652267710160, 8.577007646200970247258632794949, 9.329250777860533703563289912222, 11.33841197973281248633552464724, 11.82351702081016615825272758926