L(s) = 1 | + (0.794 + 1.37i)3-s + (−1.64 + 2.84i)5-s + (2.64 − 0.0963i)7-s + (0.238 − 0.413i)9-s + (0.5 + 0.866i)11-s − 4.98·13-s − 5.22·15-s + (1.84 + 3.20i)17-s + (−2.84 + 4.93i)19-s + (2.23 + 3.56i)21-s + (−0.349 + 0.605i)23-s + (−2.90 − 5.03i)25-s + 5.52·27-s + 7.68·29-s + (−5.25 − 9.10i)31-s + ⋯ |
L(s) = 1 | + (0.458 + 0.794i)3-s + (−0.735 + 1.27i)5-s + (0.999 − 0.0364i)7-s + (0.0795 − 0.137i)9-s + (0.150 + 0.261i)11-s − 1.38·13-s − 1.34·15-s + (0.448 + 0.777i)17-s + (−0.653 + 1.13i)19-s + (0.487 + 0.776i)21-s + (−0.0729 + 0.126i)23-s + (−0.581 − 1.00i)25-s + 1.06·27-s + 1.42·29-s + (−0.943 − 1.63i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0996 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0996 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.936114 + 1.03453i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.936114 + 1.03453i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2.64 + 0.0963i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.794 - 1.37i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.64 - 2.84i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 + 4.98T + 13T^{2} \) |
| 17 | \( 1 + (-1.84 - 3.20i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.84 - 4.93i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.349 - 0.605i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 7.68T + 29T^{2} \) |
| 31 | \( 1 + (5.25 + 9.10i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.28 + 9.15i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 7.81T + 41T^{2} \) |
| 43 | \( 1 - 1.63T + 43T^{2} \) |
| 47 | \( 1 + (1.15 - 1.99i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.60 - 2.78i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.88 + 6.72i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.47 - 4.29i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.810 - 1.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.30T + 71T^{2} \) |
| 73 | \( 1 + (2.70 + 4.68i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.36 + 2.36i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.65T + 83T^{2} \) |
| 89 | \( 1 + (-6.43 + 11.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 18.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83854016422797573803060946047, −10.80673204150653615773195454113, −10.24171224551235887943590986490, −9.262791785899758622974151932251, −7.929928471919498375446508986556, −7.43301893057186764375547676831, −6.07477235983964078624930098792, −4.48123149648900932946715113191, −3.76968095752694427187523989997, −2.40265256290060261019015024870,
1.07083556439729716118656628580, 2.59786165038871904367700510929, 4.61233893173603829153451800146, 5.00566227729328721009000076616, 6.92401275326877987531542536111, 7.77785775276031277739374324995, 8.410501946090070817279948154678, 9.231844452979391084434663251360, 10.64052019105558136447448636790, 11.82611521227536084564425589218