L(s) = 1 | + (0.794 + 1.37i)3-s + (−1.64 + 2.84i)5-s + (2.64 − 0.0963i)7-s + (0.238 − 0.413i)9-s + (0.5 + 0.866i)11-s − 4.98·13-s − 5.22·15-s + (1.84 + 3.20i)17-s + (−2.84 + 4.93i)19-s + (2.23 + 3.56i)21-s + (−0.349 + 0.605i)23-s + (−2.90 − 5.03i)25-s + 5.52·27-s + 7.68·29-s + (−5.25 − 9.10i)31-s + ⋯ |
L(s) = 1 | + (0.458 + 0.794i)3-s + (−0.735 + 1.27i)5-s + (0.999 − 0.0364i)7-s + (0.0795 − 0.137i)9-s + (0.150 + 0.261i)11-s − 1.38·13-s − 1.34·15-s + (0.448 + 0.777i)17-s + (−0.653 + 1.13i)19-s + (0.487 + 0.776i)21-s + (−0.0729 + 0.126i)23-s + (−0.581 − 1.00i)25-s + 1.06·27-s + 1.42·29-s + (−0.943 − 1.63i)31-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(−0.0996−0.995i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(−0.0996−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
−0.0996−0.995i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), −0.0996−0.995i)
|
Particular Values
L(1) |
≈ |
0.936114+1.03453i |
L(21) |
≈ |
0.936114+1.03453i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−2.64+0.0963i)T |
| 11 | 1+(−0.5−0.866i)T |
good | 3 | 1+(−0.794−1.37i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1.64−2.84i)T+(−2.5−4.33i)T2 |
| 13 | 1+4.98T+13T2 |
| 17 | 1+(−1.84−3.20i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.84−4.93i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.349−0.605i)T+(−11.5−19.9i)T2 |
| 29 | 1−7.68T+29T2 |
| 31 | 1+(5.25+9.10i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−5.28+9.15i)T+(−18.5−32.0i)T2 |
| 41 | 1−7.81T+41T2 |
| 43 | 1−1.63T+43T2 |
| 47 | 1+(1.15−1.99i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1.60−2.78i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.88+6.72i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.47−4.29i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.810−1.40i)T+(−33.5+58.0i)T2 |
| 71 | 1+2.30T+71T2 |
| 73 | 1+(2.70+4.68i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−1.36+2.36i)T+(−39.5−68.4i)T2 |
| 83 | 1−6.65T+83T2 |
| 89 | 1+(−6.43+11.1i)T+(−44.5−77.0i)T2 |
| 97 | 1−18.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.83854016422797573803060946047, −10.80673204150653615773195454113, −10.24171224551235887943590986490, −9.262791785899758622974151932251, −7.929928471919498375446508986556, −7.43301893057186764375547676831, −6.07477235983964078624930098792, −4.48123149648900932946715113191, −3.76968095752694427187523989997, −2.40265256290060261019015024870,
1.07083556439729716118656628580, 2.59786165038871904367700510929, 4.61233893173603829153451800146, 5.00566227729328721009000076616, 6.92401275326877987531542536111, 7.77785775276031277739374324995, 8.410501946090070817279948154678, 9.231844452979391084434663251360, 10.64052019105558136447448636790, 11.82611521227536084564425589218