L(s) = 1 | + (−2.14 + 1.23i)3-s + (−0.349 − 0.201i)5-s + (−0.938 − 2.47i)7-s + (1.56 − 2.71i)9-s + (0.0145 − 3.31i)11-s + 3.56·13-s + 0.999·15-s + (3.51 + 6.09i)17-s + (3.51 − 6.09i)19-s + (5.07 + 4.14i)21-s + (1.29 − 2.24i)23-s + (−2.41 − 4.18i)25-s + 0.341i·27-s − 7.90i·29-s + (−6.85 + 3.95i)31-s + ⋯ |
L(s) = 1 | + (−1.23 + 0.715i)3-s + (−0.156 − 0.0902i)5-s + (−0.354 − 0.934i)7-s + (0.522 − 0.905i)9-s + (0.00437 − 0.999i)11-s + 0.989·13-s + 0.258·15-s + (0.852 + 1.47i)17-s + (0.806 − 1.39i)19-s + (1.10 + 0.904i)21-s + (0.270 − 0.468i)23-s + (−0.483 − 0.837i)25-s + 0.0657i·27-s − 1.46i·29-s + (−1.23 + 0.710i)31-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(0.685+0.728i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(0.685+0.728i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
0.685+0.728i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(285,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), 0.685+0.728i)
|
Particular Values
L(1) |
≈ |
0.682210−0.294735i |
L(21) |
≈ |
0.682210−0.294735i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.938+2.47i)T |
| 11 | 1+(−0.0145+3.31i)T |
good | 3 | 1+(2.14−1.23i)T+(1.5−2.59i)T2 |
| 5 | 1+(0.349+0.201i)T+(2.5+4.33i)T2 |
| 13 | 1−3.56T+13T2 |
| 17 | 1+(−3.51−6.09i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.51+6.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.29+2.24i)T+(−11.5−19.9i)T2 |
| 29 | 1+7.90iT−29T2 |
| 31 | 1+(6.85−3.95i)T+(15.5−26.8i)T2 |
| 37 | 1+(−2.86+4.96i)T+(−18.5−32.0i)T2 |
| 41 | 1+3.56T+41T2 |
| 43 | 1+0.937iT−43T2 |
| 47 | 1+(−7.49−4.32i)T+(23.5+40.7i)T2 |
| 53 | 1+(−0.992−1.71i)T+(−26.5+45.8i)T2 |
| 59 | 1+(7.94−4.58i)T+(29.5−51.0i)T2 |
| 61 | 1+(−2.89+5.01i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.426−0.738i)T+(−33.5+58.0i)T2 |
| 71 | 1−0.990T+71T2 |
| 73 | 1+(6.89+11.9i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−3.95−2.28i)T+(39.5+68.4i)T2 |
| 83 | 1+1.24T+83T2 |
| 89 | 1+(1.83+1.06i)T+(44.5+77.0i)T2 |
| 97 | 1+7.57iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.23968521391881920964195549560, −10.80756110893048303962639109812, −10.04999349537897453458304009671, −8.862950053743659760500489827360, −7.67916259165491573516169063488, −6.32578146591673626878301693111, −5.72160724754435150796505081777, −4.40151554996092555135154099917, −3.50999733470198625959197051825, −0.69884957718535691083527582901,
1.50064323044594585941767350321, 3.38499876792192849247414129821, 5.26203981021514092144060654182, 5.74890215635876039417944769848, 6.93849410513162325678088504582, 7.65664097908544381505141576127, 9.125821078390038877345488589009, 10.00041828970656040907559088245, 11.26321551690612734549896680352, 11.85231519961283838674462579074