L(s) = 1 | + (−2.14 + 1.23i)3-s + (−0.349 − 0.201i)5-s + (−0.938 − 2.47i)7-s + (1.56 − 2.71i)9-s + (0.0145 − 3.31i)11-s + 3.56·13-s + 0.999·15-s + (3.51 + 6.09i)17-s + (3.51 − 6.09i)19-s + (5.07 + 4.14i)21-s + (1.29 − 2.24i)23-s + (−2.41 − 4.18i)25-s + 0.341i·27-s − 7.90i·29-s + (−6.85 + 3.95i)31-s + ⋯ |
L(s) = 1 | + (−1.23 + 0.715i)3-s + (−0.156 − 0.0902i)5-s + (−0.354 − 0.934i)7-s + (0.522 − 0.905i)9-s + (0.00437 − 0.999i)11-s + 0.989·13-s + 0.258·15-s + (0.852 + 1.47i)17-s + (0.806 − 1.39i)19-s + (1.10 + 0.904i)21-s + (0.270 − 0.468i)23-s + (−0.483 − 0.837i)25-s + 0.0657i·27-s − 1.46i·29-s + (−1.23 + 0.710i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.685 + 0.728i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.685 + 0.728i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.682210 - 0.294735i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.682210 - 0.294735i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.938 + 2.47i)T \) |
| 11 | \( 1 + (-0.0145 + 3.31i)T \) |
good | 3 | \( 1 + (2.14 - 1.23i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.349 + 0.201i)T + (2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 3.56T + 13T^{2} \) |
| 17 | \( 1 + (-3.51 - 6.09i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.51 + 6.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.29 + 2.24i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 7.90iT - 29T^{2} \) |
| 31 | \( 1 + (6.85 - 3.95i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.86 + 4.96i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.56T + 41T^{2} \) |
| 43 | \( 1 + 0.937iT - 43T^{2} \) |
| 47 | \( 1 + (-7.49 - 4.32i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.992 - 1.71i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.94 - 4.58i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.89 + 5.01i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.426 - 0.738i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 0.990T + 71T^{2} \) |
| 73 | \( 1 + (6.89 + 11.9i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.95 - 2.28i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.24T + 83T^{2} \) |
| 89 | \( 1 + (1.83 + 1.06i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.57iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23968521391881920964195549560, −10.80756110893048303962639109812, −10.04999349537897453458304009671, −8.862950053743659760500489827360, −7.67916259165491573516169063488, −6.32578146591673626878301693111, −5.72160724754435150796505081777, −4.40151554996092555135154099917, −3.50999733470198625959197051825, −0.69884957718535691083527582901,
1.50064323044594585941767350321, 3.38499876792192849247414129821, 5.26203981021514092144060654182, 5.74890215635876039417944769848, 6.93849410513162325678088504582, 7.65664097908544381505141576127, 9.125821078390038877345488589009, 10.00041828970656040907559088245, 11.26321551690612734549896680352, 11.85231519961283838674462579074