L(s) = 1 | + (1.89 − 2.61i)3-s + (1.37 + 0.445i)5-s + (−1.79 − 1.94i)7-s + (−2.28 − 7.04i)9-s + (−0.0580 + 3.31i)11-s + (−0.296 − 0.911i)13-s + (3.76 − 2.73i)15-s + (−1.98 + 6.12i)17-s + (4.84 + 3.51i)19-s + (−8.48 + 0.981i)21-s + 5.57·23-s + (−2.36 − 1.71i)25-s + (−13.5 − 4.39i)27-s + (−3.22 − 4.44i)29-s + (6.30 − 2.04i)31-s + ⋯ |
L(s) = 1 | + (1.09 − 1.50i)3-s + (0.613 + 0.199i)5-s + (−0.676 − 0.736i)7-s + (−0.763 − 2.34i)9-s + (−0.0174 + 0.999i)11-s + (−0.0821 − 0.252i)13-s + (0.972 − 0.706i)15-s + (−0.482 + 1.48i)17-s + (1.11 + 0.807i)19-s + (−1.85 + 0.214i)21-s + 1.16·23-s + (−0.472 − 0.343i)25-s + (−2.60 − 0.846i)27-s + (−0.599 − 0.824i)29-s + (1.13 − 0.367i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.119 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.119 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37009 - 1.21522i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37009 - 1.21522i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.79 + 1.94i)T \) |
| 11 | \( 1 + (0.0580 - 3.31i)T \) |
good | 3 | \( 1 + (-1.89 + 2.61i)T + (-0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (-1.37 - 0.445i)T + (4.04 + 2.93i)T^{2} \) |
| 13 | \( 1 + (0.296 + 0.911i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (1.98 - 6.12i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-4.84 - 3.51i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 5.57T + 23T^{2} \) |
| 29 | \( 1 + (3.22 + 4.44i)T + (-8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-6.30 + 2.04i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (5.93 - 4.31i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-2.54 - 1.84i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 0.0165iT - 43T^{2} \) |
| 47 | \( 1 + (-3.77 + 5.20i)T + (-14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (0.478 + 1.47i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.37 - 8.78i)T + (-18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.00 + 3.10i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 5.45T + 67T^{2} \) |
| 71 | \( 1 + (-0.241 + 0.743i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (6.71 - 4.87i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (6.11 - 1.98i)T + (63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (2.64 - 8.14i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 2.07iT - 89T^{2} \) |
| 97 | \( 1 + (4.98 - 1.61i)T + (78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84520635144679510418562564531, −10.25330192595774229038813569085, −9.593611698918662560509762640583, −8.444438728522472688792050672242, −7.53832675686999091181327019133, −6.82037813326460818681733728287, −5.95800353241129887770779452932, −3.87556627157751332727531782218, −2.64276880444192163389055383759, −1.44252274401088908056928481933,
2.65665561246624585167751007399, 3.32677363695495805364951672707, 4.86120707051613298177283764495, 5.58628497321885190629593139581, 7.20814210591422987392426755044, 8.719735158569164128258718351766, 9.167839833552707602456232091602, 9.671274978336267662598983490733, 10.79497342436489997229185379071, 11.65342147054763492089547896441