L(s) = 1 | + (1.51 + 0.493i)3-s + (0.260 + 0.359i)5-s + (1.55 − 2.14i)7-s + (−0.366 − 0.266i)9-s + (2.44 − 2.23i)11-s + (2.91 + 2.12i)13-s + (0.218 + 0.673i)15-s + (−1.73 + 1.26i)17-s + (−2.60 + 8.03i)19-s + (3.41 − 2.48i)21-s + 1.73·23-s + (1.48 − 4.56i)25-s + (−3.23 − 4.45i)27-s + (−6.19 + 2.01i)29-s + (−2.85 + 3.92i)31-s + ⋯ |
L(s) = 1 | + (0.876 + 0.284i)3-s + (0.116 + 0.160i)5-s + (0.586 − 0.809i)7-s + (−0.122 − 0.0887i)9-s + (0.737 − 0.675i)11-s + (0.809 + 0.588i)13-s + (0.0565 + 0.174i)15-s + (−0.420 + 0.305i)17-s + (−0.598 + 1.84i)19-s + (0.744 − 0.542i)21-s + 0.361·23-s + (0.296 − 0.913i)25-s + (−0.623 − 0.857i)27-s + (−1.14 + 0.373i)29-s + (−0.512 + 0.704i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0448i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80757 + 0.0405194i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80757 + 0.0405194i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.55 + 2.14i)T \) |
| 11 | \( 1 + (-2.44 + 2.23i)T \) |
good | 3 | \( 1 + (-1.51 - 0.493i)T + (2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-0.260 - 0.359i)T + (-1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-2.91 - 2.12i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.73 - 1.26i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (2.60 - 8.03i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 1.73T + 23T^{2} \) |
| 29 | \( 1 + (6.19 - 2.01i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.85 - 3.92i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.305 - 0.940i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.71 + 8.34i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 4.32iT - 43T^{2} \) |
| 47 | \( 1 + (6.63 + 2.15i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (7.09 + 5.15i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-10.2 + 3.34i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (5.62 - 4.08i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 11.4T + 67T^{2} \) |
| 71 | \( 1 + (10.6 - 7.70i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.23 + 6.86i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (5.15 - 7.09i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (12.6 - 9.18i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 3.04iT - 89T^{2} \) |
| 97 | \( 1 + (-0.726 + 0.999i)T + (-29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48946665675207452303822105067, −10.79710365219596578119037096289, −9.775094807364677980196812668849, −8.667883132698679208124747923463, −8.239592491527137936577713275462, −6.87359367440994241056191017641, −5.85614600497781662585524657917, −4.13296654115164359096352753969, −3.51595144571786382892682246850, −1.70881354820295562751692956296,
1.84394543557431530139024722311, 2.99066430975550622045664654459, 4.54872637537364151785604473613, 5.69958359721651625878759432234, 7.00643641130979328005223527821, 8.012848806444426398356952700913, 8.981123772692025053811551622293, 9.316993285190711213719986278807, 11.05952192879820019891286384545, 11.49102211392283986784796800991