L(s) = 1 | + (−0.866 + 0.5i)9-s + (−0.366 − 1.36i)11-s + (−1 − 1.73i)23-s + (0.866 + 0.5i)25-s + (1 − i)29-s + (0.366 − 1.36i)37-s + (1 − i)43-s + (−1.36 + 0.366i)53-s + (1.36 − 0.366i)67-s + (−1.73 + i)79-s + (0.499 − 0.866i)81-s + (1 + 0.999i)99-s + (1.36 + 0.366i)107-s + (−0.366 − 1.36i)109-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)9-s + (−0.366 − 1.36i)11-s + (−1 − 1.73i)23-s + (0.866 + 0.5i)25-s + (1 − i)29-s + (0.366 − 1.36i)37-s + (1 − i)43-s + (−1.36 + 0.366i)53-s + (1.36 − 0.366i)67-s + (−1.73 + i)79-s + (0.499 − 0.866i)81-s + (1 + 0.999i)99-s + (1.36 + 0.366i)107-s + (−0.366 − 1.36i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.254 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.254 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9555322539\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9555322539\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1 + i)T - iT^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (-1 + i)T - iT^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.402021085623225893175264708347, −8.314372507895499622887003895409, −7.28442729504375339708428731681, −6.22461487432728380234421541028, −5.81496394181867140380969245686, −4.91773627386179798773190807724, −3.99802879471482290362780376973, −2.93958174251588638395214066521, −2.31355278674019316467908035807, −0.59244167575062432436838804239,
1.41646290123275815725696172388, 2.59112895467443584356043755052, 3.38348978933619090248109067271, 4.47559466961476429248012606820, 5.13926342527553665391787995648, 6.05699670365511323374400575283, 6.74819956544759876393350815165, 7.58870429447240524747418824385, 8.233182975542733848226096295840, 9.055454888740109864935558763768