Properties

Label 2-56e2-1.1-c1-0-52
Degree $2$
Conductor $3136$
Sign $-1$
Analytic cond. $25.0410$
Root an. cond. $5.00410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·9-s + 6·13-s − 2·17-s − 25-s + 10·29-s + 2·37-s − 10·41-s + 6·45-s − 14·53-s − 10·61-s − 12·65-s + 6·73-s + 9·81-s + 4·85-s − 10·89-s − 18·97-s − 2·101-s − 6·109-s − 14·113-s − 18·117-s + ⋯
L(s)  = 1  − 0.894·5-s − 9-s + 1.66·13-s − 0.485·17-s − 1/5·25-s + 1.85·29-s + 0.328·37-s − 1.56·41-s + 0.894·45-s − 1.92·53-s − 1.28·61-s − 1.48·65-s + 0.702·73-s + 81-s + 0.433·85-s − 1.05·89-s − 1.82·97-s − 0.199·101-s − 0.574·109-s − 1.31·113-s − 1.66·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3136\)    =    \(2^{6} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(25.0410\)
Root analytic conductor: \(5.00410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3136,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.345357893193109848205355184463, −7.81663575443705708449207741292, −6.62808933612086279625365823883, −6.21664603313252085616146347555, −5.21491067832233438164314315088, −4.31344318158954137705495075068, −3.51581292263084701318927160501, −2.79060940321229954934356841383, −1.36200050793739601416696080977, 0, 1.36200050793739601416696080977, 2.79060940321229954934356841383, 3.51581292263084701318927160501, 4.31344318158954137705495075068, 5.21491067832233438164314315088, 6.21664603313252085616146347555, 6.62808933612086279625365823883, 7.81663575443705708449207741292, 8.345357893193109848205355184463

Graph of the $Z$-function along the critical line