L(s) = 1 | + 42.0·2-s + 1.25e3·4-s − 625·5-s + 2.40e3·7-s + 3.13e4·8-s − 2.62e4·10-s + 746.·11-s − 1.39e5·13-s + 1.01e5·14-s + 6.76e5·16-s − 6.57e5·17-s + 5.86e4·19-s − 7.86e5·20-s + 3.13e4·22-s − 2.05e6·23-s + 3.90e5·25-s − 5.85e6·26-s + 3.02e6·28-s + 2.78e6·29-s − 4.13e6·31-s + 1.23e7·32-s − 2.76e7·34-s − 1.50e6·35-s − 3.47e6·37-s + 2.46e6·38-s − 1.96e7·40-s − 6.46e6·41-s + ⋯ |
L(s) = 1 | + 1.85·2-s + 2.45·4-s − 0.447·5-s + 0.377·7-s + 2.70·8-s − 0.831·10-s + 0.0153·11-s − 1.35·13-s + 0.702·14-s + 2.58·16-s − 1.91·17-s + 0.103·19-s − 1.09·20-s + 0.0285·22-s − 1.53·23-s + 0.200·25-s − 2.51·26-s + 0.928·28-s + 0.730·29-s − 0.804·31-s + 2.08·32-s − 3.55·34-s − 0.169·35-s − 0.304·37-s + 0.192·38-s − 1.21·40-s − 0.357·41-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)−Λ(10−s)
Λ(s)=(=(315s/2ΓC(s+9/2)L(s)−Λ(1−s)
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+625T |
| 7 | 1−2.40e3T |
good | 2 | 1−42.0T+512T2 |
| 11 | 1−746.T+2.35e9T2 |
| 13 | 1+1.39e5T+1.06e10T2 |
| 17 | 1+6.57e5T+1.18e11T2 |
| 19 | 1−5.86e4T+3.22e11T2 |
| 23 | 1+2.05e6T+1.80e12T2 |
| 29 | 1−2.78e6T+1.45e13T2 |
| 31 | 1+4.13e6T+2.64e13T2 |
| 37 | 1+3.47e6T+1.29e14T2 |
| 41 | 1+6.46e6T+3.27e14T2 |
| 43 | 1+1.69e6T+5.02e14T2 |
| 47 | 1+5.51e6T+1.11e15T2 |
| 53 | 1+3.00e7T+3.29e15T2 |
| 59 | 1−3.57e7T+8.66e15T2 |
| 61 | 1−1.95e8T+1.16e16T2 |
| 67 | 1−2.00e8T+2.72e16T2 |
| 71 | 1−2.54e8T+4.58e16T2 |
| 73 | 1+4.48e8T+5.88e16T2 |
| 79 | 1+1.37e8T+1.19e17T2 |
| 83 | 1+6.74e8T+1.86e17T2 |
| 89 | 1+5.23e8T+3.50e17T2 |
| 97 | 1+1.00e9T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.967077926009845161391535666422, −8.401279308230185668311816365483, −7.27394267319601216437375937907, −6.59248644576821164699407024647, −5.41881228336484319106344835026, −4.57829622528875754637731116254, −3.92304727808932936453962383673, −2.62973776203302289034250603237, −1.90139302121829854285751001864, 0,
1.90139302121829854285751001864, 2.62973776203302289034250603237, 3.92304727808932936453962383673, 4.57829622528875754637731116254, 5.41881228336484319106344835026, 6.59248644576821164699407024647, 7.27394267319601216437375937907, 8.401279308230185668311816365483, 9.967077926009845161391535666422