Properties

Label 2-315-1.1-c9-0-5
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 42.7·2-s + 1.31e3·4-s − 625·5-s − 2.40e3·7-s − 3.44e4·8-s + 2.67e4·10-s − 4.15e4·11-s + 1.03e5·13-s + 1.02e5·14-s + 8.00e5·16-s − 3.55e5·17-s − 3.49e5·19-s − 8.23e5·20-s + 1.77e6·22-s − 2.28e5·23-s + 3.90e5·25-s − 4.44e6·26-s − 3.16e6·28-s − 4.02e6·29-s − 3.29e6·31-s − 1.65e7·32-s + 1.51e7·34-s + 1.50e6·35-s − 2.13e7·37-s + 1.49e7·38-s + 2.15e7·40-s − 1.05e7·41-s + ⋯
L(s)  = 1  − 1.89·2-s + 2.57·4-s − 0.447·5-s − 0.377·7-s − 2.97·8-s + 0.845·10-s − 0.856·11-s + 1.00·13-s + 0.714·14-s + 3.05·16-s − 1.03·17-s − 0.614·19-s − 1.15·20-s + 1.61·22-s − 0.170·23-s + 0.200·25-s − 1.90·26-s − 0.973·28-s − 1.05·29-s − 0.640·31-s − 2.79·32-s + 1.95·34-s + 0.169·35-s − 1.86·37-s + 1.16·38-s + 1.33·40-s − 0.581·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.1879752958\)
\(L(\frac12)\) \(\approx\) \(0.1879752958\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 + 42.7T + 512T^{2} \)
11 \( 1 + 4.15e4T + 2.35e9T^{2} \)
13 \( 1 - 1.03e5T + 1.06e10T^{2} \)
17 \( 1 + 3.55e5T + 1.18e11T^{2} \)
19 \( 1 + 3.49e5T + 3.22e11T^{2} \)
23 \( 1 + 2.28e5T + 1.80e12T^{2} \)
29 \( 1 + 4.02e6T + 1.45e13T^{2} \)
31 \( 1 + 3.29e6T + 2.64e13T^{2} \)
37 \( 1 + 2.13e7T + 1.29e14T^{2} \)
41 \( 1 + 1.05e7T + 3.27e14T^{2} \)
43 \( 1 - 3.89e6T + 5.02e14T^{2} \)
47 \( 1 - 3.31e7T + 1.11e15T^{2} \)
53 \( 1 - 6.31e7T + 3.29e15T^{2} \)
59 \( 1 + 5.86e7T + 8.66e15T^{2} \)
61 \( 1 - 1.37e8T + 1.16e16T^{2} \)
67 \( 1 - 8.36e7T + 2.72e16T^{2} \)
71 \( 1 + 1.50e8T + 4.58e16T^{2} \)
73 \( 1 + 2.74e8T + 5.88e16T^{2} \)
79 \( 1 + 2.75e8T + 1.19e17T^{2} \)
83 \( 1 + 2.32e8T + 1.86e17T^{2} \)
89 \( 1 + 2.71e8T + 3.50e17T^{2} \)
97 \( 1 + 9.76e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10010272566521228734004060608, −8.892521828881546059602082796421, −8.537535677376037458021480655571, −7.45041351000774092201192469335, −6.74204442724930753785075941579, −5.65169859744244241383429003622, −3.77693023138087044460310282331, −2.54034599117574784892349132871, −1.55603833284047938926997592932, −0.25020778936009660289781570100, 0.25020778936009660289781570100, 1.55603833284047938926997592932, 2.54034599117574784892349132871, 3.77693023138087044460310282331, 5.65169859744244241383429003622, 6.74204442724930753785075941579, 7.45041351000774092201192469335, 8.537535677376037458021480655571, 8.892521828881546059602082796421, 10.10010272566521228734004060608

Graph of the $Z$-function along the critical line