Properties

Label 2-315-1.1-c9-0-29
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 33.5·2-s + 610.·4-s − 625·5-s + 2.40e3·7-s − 3.29e3·8-s + 2.09e4·10-s + 3.65e4·11-s + 1.21e4·13-s − 8.04e4·14-s − 2.02e5·16-s + 1.51e5·17-s + 5.18e5·19-s − 3.81e5·20-s − 1.22e6·22-s + 2.13e6·23-s + 3.90e5·25-s − 4.05e5·26-s + 1.46e6·28-s + 1.31e6·29-s + 3.38e6·31-s + 8.45e6·32-s − 5.07e6·34-s − 1.50e6·35-s − 1.53e7·37-s − 1.73e7·38-s + 2.06e6·40-s + 2.82e7·41-s + ⋯
L(s)  = 1  − 1.48·2-s + 1.19·4-s − 0.447·5-s + 0.377·7-s − 0.284·8-s + 0.662·10-s + 0.752·11-s + 0.117·13-s − 0.559·14-s − 0.770·16-s + 0.439·17-s + 0.913·19-s − 0.533·20-s − 1.11·22-s + 1.58·23-s + 0.200·25-s − 0.174·26-s + 0.450·28-s + 0.344·29-s + 0.658·31-s + 1.42·32-s − 0.651·34-s − 0.169·35-s − 1.34·37-s − 1.35·38-s + 0.127·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.275729707\)
\(L(\frac12)\) \(\approx\) \(1.275729707\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 33.5T + 512T^{2} \)
11 \( 1 - 3.65e4T + 2.35e9T^{2} \)
13 \( 1 - 1.21e4T + 1.06e10T^{2} \)
17 \( 1 - 1.51e5T + 1.18e11T^{2} \)
19 \( 1 - 5.18e5T + 3.22e11T^{2} \)
23 \( 1 - 2.13e6T + 1.80e12T^{2} \)
29 \( 1 - 1.31e6T + 1.45e13T^{2} \)
31 \( 1 - 3.38e6T + 2.64e13T^{2} \)
37 \( 1 + 1.53e7T + 1.29e14T^{2} \)
41 \( 1 - 2.82e7T + 3.27e14T^{2} \)
43 \( 1 - 2.53e7T + 5.02e14T^{2} \)
47 \( 1 + 7.18e6T + 1.11e15T^{2} \)
53 \( 1 - 5.45e7T + 3.29e15T^{2} \)
59 \( 1 - 9.04e7T + 8.66e15T^{2} \)
61 \( 1 - 8.16e7T + 1.16e16T^{2} \)
67 \( 1 - 1.97e7T + 2.72e16T^{2} \)
71 \( 1 - 2.51e8T + 4.58e16T^{2} \)
73 \( 1 - 1.43e8T + 5.88e16T^{2} \)
79 \( 1 + 4.93e8T + 1.19e17T^{2} \)
83 \( 1 + 1.09e8T + 1.86e17T^{2} \)
89 \( 1 + 7.26e8T + 3.50e17T^{2} \)
97 \( 1 + 4.86e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.912514027893697623035403283956, −9.088180301230093558217693700613, −8.388085550213483326800043100223, −7.44840059384876898286894215242, −6.77554876911984755284774737700, −5.28864974654885368183646658505, −4.04216900223873078446460560417, −2.69567447403248851525737045114, −1.28848320419624872264300591985, −0.73429334360272286728693362583, 0.73429334360272286728693362583, 1.28848320419624872264300591985, 2.69567447403248851525737045114, 4.04216900223873078446460560417, 5.28864974654885368183646658505, 6.77554876911984755284774737700, 7.44840059384876898286894215242, 8.388085550213483326800043100223, 9.088180301230093558217693700613, 9.912514027893697623035403283956

Graph of the $Z$-function along the critical line