Properties

Label 2-315-21.20-c9-0-6
Degree $2$
Conductor $315$
Sign $-0.563 - 0.825i$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.2i·2-s + 407.·4-s + 625·5-s + (−6.35e3 − 103. i)7-s − 9.38e3i·8-s − 6.37e3i·10-s + 3.22e4i·11-s + 8.60e4i·13-s + (−1.06e3 + 6.48e4i)14-s + 1.12e5·16-s + 1.43e4·17-s − 1.89e5i·19-s + 2.54e5·20-s + 3.29e5·22-s − 5.82e5i·23-s + ⋯
L(s)  = 1  − 0.451i·2-s + 0.796·4-s + 0.447·5-s + (−0.999 − 0.0163i)7-s − 0.810i·8-s − 0.201i·10-s + 0.665i·11-s + 0.835i·13-s + (−0.00737 + 0.451i)14-s + 0.430·16-s + 0.0415·17-s − 0.334i·19-s + 0.356·20-s + 0.300·22-s − 0.433i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.563 - 0.825i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.563 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-0.563 - 0.825i$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{315} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ -0.563 - 0.825i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.6330037203\)
\(L(\frac12)\) \(\approx\) \(0.6330037203\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 625T \)
7 \( 1 + (6.35e3 + 103. i)T \)
good2 \( 1 + 10.2iT - 512T^{2} \)
11 \( 1 - 3.22e4iT - 2.35e9T^{2} \)
13 \( 1 - 8.60e4iT - 1.06e10T^{2} \)
17 \( 1 - 1.43e4T + 1.18e11T^{2} \)
19 \( 1 + 1.89e5iT - 3.22e11T^{2} \)
23 \( 1 + 5.82e5iT - 1.80e12T^{2} \)
29 \( 1 - 5.36e6iT - 1.45e13T^{2} \)
31 \( 1 + 7.52e6iT - 2.64e13T^{2} \)
37 \( 1 - 1.95e6T + 1.29e14T^{2} \)
41 \( 1 + 2.23e7T + 3.27e14T^{2} \)
43 \( 1 + 3.30e7T + 5.02e14T^{2} \)
47 \( 1 - 3.49e7T + 1.11e15T^{2} \)
53 \( 1 - 3.02e6iT - 3.29e15T^{2} \)
59 \( 1 + 6.58e7T + 8.66e15T^{2} \)
61 \( 1 - 1.83e8iT - 1.16e16T^{2} \)
67 \( 1 + 1.44e8T + 2.72e16T^{2} \)
71 \( 1 + 8.85e7iT - 4.58e16T^{2} \)
73 \( 1 - 2.24e8iT - 5.88e16T^{2} \)
79 \( 1 + 8.97e7T + 1.19e17T^{2} \)
83 \( 1 + 4.61e8T + 1.86e17T^{2} \)
89 \( 1 + 1.09e9T + 3.50e17T^{2} \)
97 \( 1 + 2.98e7iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31154805259827144155676120010, −9.748049062959511276087869234277, −8.799224900658293753791874654514, −7.23408072821207522649738520209, −6.71486062792806669902208336948, −5.75484477363596413161859672056, −4.31700304951097708354172030324, −3.16338006505104848011558424396, −2.26665976963257994117132316743, −1.30629731636653329943209229737, 0.10471853590096997016870828664, 1.46391156797036519946732682541, 2.73010133464088960875989942505, 3.47681861682071425794492097278, 5.24976900165472995158969775315, 6.04662411234854492853661941134, 6.72702986638833352948209535572, 7.79010700834811811049428085279, 8.709655927996797144478215637882, 9.923125643522682322861349727697

Graph of the $Z$-function along the critical line