L(s) = 1 | − 10.2i·2-s + 407.·4-s + 625·5-s + (−6.35e3 − 103. i)7-s − 9.38e3i·8-s − 6.37e3i·10-s + 3.22e4i·11-s + 8.60e4i·13-s + (−1.06e3 + 6.48e4i)14-s + 1.12e5·16-s + 1.43e4·17-s − 1.89e5i·19-s + 2.54e5·20-s + 3.29e5·22-s − 5.82e5i·23-s + ⋯ |
L(s) = 1 | − 0.451i·2-s + 0.796·4-s + 0.447·5-s + (−0.999 − 0.0163i)7-s − 0.810i·8-s − 0.201i·10-s + 0.665i·11-s + 0.835i·13-s + (−0.00737 + 0.451i)14-s + 0.430·16-s + 0.0415·17-s − 0.334i·19-s + 0.356·20-s + 0.300·22-s − 0.433i·23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(−0.563−0.825i)Λ(10−s)
Λ(s)=(=(315s/2ΓC(s+9/2)L(s)(−0.563−0.825i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
−0.563−0.825i
|
Analytic conductor: |
162.236 |
Root analytic conductor: |
12.7372 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :9/2), −0.563−0.825i)
|
Particular Values
L(5) |
≈ |
0.6330037203 |
L(21) |
≈ |
0.6330037203 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−625T |
| 7 | 1+(6.35e3+103.i)T |
good | 2 | 1+10.2iT−512T2 |
| 11 | 1−3.22e4iT−2.35e9T2 |
| 13 | 1−8.60e4iT−1.06e10T2 |
| 17 | 1−1.43e4T+1.18e11T2 |
| 19 | 1+1.89e5iT−3.22e11T2 |
| 23 | 1+5.82e5iT−1.80e12T2 |
| 29 | 1−5.36e6iT−1.45e13T2 |
| 31 | 1+7.52e6iT−2.64e13T2 |
| 37 | 1−1.95e6T+1.29e14T2 |
| 41 | 1+2.23e7T+3.27e14T2 |
| 43 | 1+3.30e7T+5.02e14T2 |
| 47 | 1−3.49e7T+1.11e15T2 |
| 53 | 1−3.02e6iT−3.29e15T2 |
| 59 | 1+6.58e7T+8.66e15T2 |
| 61 | 1−1.83e8iT−1.16e16T2 |
| 67 | 1+1.44e8T+2.72e16T2 |
| 71 | 1+8.85e7iT−4.58e16T2 |
| 73 | 1−2.24e8iT−5.88e16T2 |
| 79 | 1+8.97e7T+1.19e17T2 |
| 83 | 1+4.61e8T+1.86e17T2 |
| 89 | 1+1.09e9T+3.50e17T2 |
| 97 | 1+2.98e7iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31154805259827144155676120010, −9.748049062959511276087869234277, −8.799224900658293753791874654514, −7.23408072821207522649738520209, −6.71486062792806669902208336948, −5.75484477363596413161859672056, −4.31700304951097708354172030324, −3.16338006505104848011558424396, −2.26665976963257994117132316743, −1.30629731636653329943209229737,
0.10471853590096997016870828664, 1.46391156797036519946732682541, 2.73010133464088960875989942505, 3.47681861682071425794492097278, 5.24976900165472995158969775315, 6.04662411234854492853661941134, 6.72702986638833352948209535572, 7.79010700834811811049428085279, 8.709655927996797144478215637882, 9.923125643522682322861349727697