L(s) = 1 | − 4.15i·2-s + 494.·4-s + 625·5-s + (−3.75e3 + 5.12e3i)7-s − 4.18e3i·8-s − 2.59e3i·10-s − 3.49e4i·11-s − 3.89e4i·13-s + (2.13e4 + 1.56e4i)14-s + 2.35e5·16-s + 1.12e5·17-s − 3.35e5i·19-s + 3.09e5·20-s − 1.45e5·22-s + 9.47e5i·23-s + ⋯ |
L(s) = 1 | − 0.183i·2-s + 0.966·4-s + 0.447·5-s + (−0.590 + 0.807i)7-s − 0.361i·8-s − 0.0821i·10-s − 0.719i·11-s − 0.378i·13-s + (0.148 + 0.108i)14-s + 0.899·16-s + 0.327·17-s − 0.590i·19-s + 0.432·20-s − 0.132·22-s + 0.706i·23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(0.317+0.948i)Λ(10−s)
Λ(s)=(=(315s/2ΓC(s+9/2)L(s)(0.317+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
0.317+0.948i
|
Analytic conductor: |
162.236 |
Root analytic conductor: |
12.7372 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :9/2), 0.317+0.948i)
|
Particular Values
L(5) |
≈ |
2.793495681 |
L(21) |
≈ |
2.793495681 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−625T |
| 7 | 1+(3.75e3−5.12e3i)T |
good | 2 | 1+4.15iT−512T2 |
| 11 | 1+3.49e4iT−2.35e9T2 |
| 13 | 1+3.89e4iT−1.06e10T2 |
| 17 | 1−1.12e5T+1.18e11T2 |
| 19 | 1+3.35e5iT−3.22e11T2 |
| 23 | 1−9.47e5iT−1.80e12T2 |
| 29 | 1−4.08e6iT−1.45e13T2 |
| 31 | 1+8.08e6iT−2.64e13T2 |
| 37 | 1+1.32e7T+1.29e14T2 |
| 41 | 1−1.93e7T+3.27e14T2 |
| 43 | 1−2.20e7T+5.02e14T2 |
| 47 | 1+4.71e7T+1.11e15T2 |
| 53 | 1+7.62e7iT−3.29e15T2 |
| 59 | 1−9.15e6T+8.66e15T2 |
| 61 | 1−5.25e7iT−1.16e16T2 |
| 67 | 1−2.14e8T+2.72e16T2 |
| 71 | 1+3.10e8iT−4.58e16T2 |
| 73 | 1+8.91e7iT−5.88e16T2 |
| 79 | 1−2.43e8T+1.19e17T2 |
| 83 | 1+6.31e8T+1.86e17T2 |
| 89 | 1+3.86e8T+3.50e17T2 |
| 97 | 1+6.75e8iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.934546942609440041802145673283, −9.127206176951515946973929950227, −8.009137063705110255534962134341, −6.90491214640955027259644782285, −6.02010003847087902338704991391, −5.34004968825980270739752721121, −3.51773679449601659847479075102, −2.75259043174573709576140822658, −1.78010153754980051233715086645, −0.51967392454528699313824876076,
1.04234189538211737082684581446, 2.05243052608031061835785810493, 3.13133941401914263616025632945, 4.32364821940357550038574547059, 5.64881566612348874147382216058, 6.61633197000864840738056862064, 7.19312077844128740071471714492, 8.233670672369317773393814565124, 9.590270057186501246434863367577, 10.28119405834040478700363764385