L(s) = 1 | + 16.2i·2-s + 246.·4-s + 625·5-s + (−4.03e3 + 4.90e3i)7-s + 1.23e4i·8-s + 1.01e4i·10-s + 7.41e4i·11-s − 1.88e5i·13-s + (−7.99e4 − 6.56e4i)14-s − 7.47e4·16-s + 4.57e5·17-s + 5.34e5i·19-s + 1.54e5·20-s − 1.20e6·22-s + 8.58e5i·23-s + ⋯ |
L(s) = 1 | + 0.719i·2-s + 0.482·4-s + 0.447·5-s + (−0.634 + 0.772i)7-s + 1.06i·8-s + 0.321i·10-s + 1.52i·11-s − 1.83i·13-s + (−0.556 − 0.456i)14-s − 0.285·16-s + 1.32·17-s + 0.940i·19-s + 0.215·20-s − 1.09·22-s + 0.639i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0722i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0722i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(2.507157274\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.507157274\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - 625T \) |
| 7 | \( 1 + (4.03e3 - 4.90e3i)T \) |
good | 2 | \( 1 - 16.2iT - 512T^{2} \) |
| 11 | \( 1 - 7.41e4iT - 2.35e9T^{2} \) |
| 13 | \( 1 + 1.88e5iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 4.57e5T + 1.18e11T^{2} \) |
| 19 | \( 1 - 5.34e5iT - 3.22e11T^{2} \) |
| 23 | \( 1 - 8.58e5iT - 1.80e12T^{2} \) |
| 29 | \( 1 - 4.72e6iT - 1.45e13T^{2} \) |
| 31 | \( 1 - 2.47e5iT - 2.64e13T^{2} \) |
| 37 | \( 1 - 1.57e7T + 1.29e14T^{2} \) |
| 41 | \( 1 + 1.50e7T + 3.27e14T^{2} \) |
| 43 | \( 1 - 4.15e6T + 5.02e14T^{2} \) |
| 47 | \( 1 + 1.30e7T + 1.11e15T^{2} \) |
| 53 | \( 1 + 9.25e7iT - 3.29e15T^{2} \) |
| 59 | \( 1 - 1.12e8T + 8.66e15T^{2} \) |
| 61 | \( 1 + 3.91e7iT - 1.16e16T^{2} \) |
| 67 | \( 1 - 3.12e6T + 2.72e16T^{2} \) |
| 71 | \( 1 - 3.51e8iT - 4.58e16T^{2} \) |
| 73 | \( 1 - 4.73e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 + 3.62e8T + 1.19e17T^{2} \) |
| 83 | \( 1 + 2.56e8T + 1.86e17T^{2} \) |
| 89 | \( 1 - 7.32e8T + 3.50e17T^{2} \) |
| 97 | \( 1 + 2.33e8iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14471516472393140718120188782, −9.873990463128710952078723463920, −8.412477134349977546943855874851, −7.63119292742937022006848996882, −6.74524648077229300560143729261, −5.61192559520140008683345926448, −5.30650312979133634960231573400, −3.37357298102064781164578246180, −2.45036850243422958145537490433, −1.33686365042867680018281314550,
0.45923721410385796047079988224, 1.25800571251061845940148500776, 2.49875105321338939995313811091, 3.38578850722041178655770119295, 4.35467374873729417454261812019, 6.03647217165897199244409674808, 6.59003200469797116757978803884, 7.64906143520517208804001337968, 9.044568049559795365344686475803, 9.789291157330055211239984523169