Properties

Label 2-315-21.20-c9-0-31
Degree 22
Conductor 315315
Sign 0.9970.0722i-0.997 - 0.0722i
Analytic cond. 162.236162.236
Root an. cond. 12.737212.7372
Motivic weight 99
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16.2i·2-s + 246.·4-s + 625·5-s + (−4.03e3 + 4.90e3i)7-s + 1.23e4i·8-s + 1.01e4i·10-s + 7.41e4i·11-s − 1.88e5i·13-s + (−7.99e4 − 6.56e4i)14-s − 7.47e4·16-s + 4.57e5·17-s + 5.34e5i·19-s + 1.54e5·20-s − 1.20e6·22-s + 8.58e5i·23-s + ⋯
L(s)  = 1  + 0.719i·2-s + 0.482·4-s + 0.447·5-s + (−0.634 + 0.772i)7-s + 1.06i·8-s + 0.321i·10-s + 1.52i·11-s − 1.83i·13-s + (−0.556 − 0.456i)14-s − 0.285·16-s + 1.32·17-s + 0.940i·19-s + 0.215·20-s − 1.09·22-s + 0.639i·23-s + ⋯

Functional equation

Λ(s)=(315s/2ΓC(s)L(s)=((0.9970.0722i)Λ(10s)\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0722i)\, \overline{\Lambda}(10-s) \end{aligned}
Λ(s)=(315s/2ΓC(s+9/2)L(s)=((0.9970.0722i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0722i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 315315    =    32573^{2} \cdot 5 \cdot 7
Sign: 0.9970.0722i-0.997 - 0.0722i
Analytic conductor: 162.236162.236
Root analytic conductor: 12.737212.7372
Motivic weight: 99
Rational: no
Arithmetic: yes
Character: χ315(251,)\chi_{315} (251, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 315, ( :9/2), 0.9970.0722i)(2,\ 315,\ (\ :9/2),\ -0.997 - 0.0722i)

Particular Values

L(5)L(5) \approx 2.5071572742.507157274
L(12)L(\frac12) \approx 2.5071572742.507157274
L(112)L(\frac{11}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1625T 1 - 625T
7 1+(4.03e34.90e3i)T 1 + (4.03e3 - 4.90e3i)T
good2 116.2iT512T2 1 - 16.2iT - 512T^{2}
11 17.41e4iT2.35e9T2 1 - 7.41e4iT - 2.35e9T^{2}
13 1+1.88e5iT1.06e10T2 1 + 1.88e5iT - 1.06e10T^{2}
17 14.57e5T+1.18e11T2 1 - 4.57e5T + 1.18e11T^{2}
19 15.34e5iT3.22e11T2 1 - 5.34e5iT - 3.22e11T^{2}
23 18.58e5iT1.80e12T2 1 - 8.58e5iT - 1.80e12T^{2}
29 14.72e6iT1.45e13T2 1 - 4.72e6iT - 1.45e13T^{2}
31 12.47e5iT2.64e13T2 1 - 2.47e5iT - 2.64e13T^{2}
37 11.57e7T+1.29e14T2 1 - 1.57e7T + 1.29e14T^{2}
41 1+1.50e7T+3.27e14T2 1 + 1.50e7T + 3.27e14T^{2}
43 14.15e6T+5.02e14T2 1 - 4.15e6T + 5.02e14T^{2}
47 1+1.30e7T+1.11e15T2 1 + 1.30e7T + 1.11e15T^{2}
53 1+9.25e7iT3.29e15T2 1 + 9.25e7iT - 3.29e15T^{2}
59 11.12e8T+8.66e15T2 1 - 1.12e8T + 8.66e15T^{2}
61 1+3.91e7iT1.16e16T2 1 + 3.91e7iT - 1.16e16T^{2}
67 13.12e6T+2.72e16T2 1 - 3.12e6T + 2.72e16T^{2}
71 13.51e8iT4.58e16T2 1 - 3.51e8iT - 4.58e16T^{2}
73 14.73e8iT5.88e16T2 1 - 4.73e8iT - 5.88e16T^{2}
79 1+3.62e8T+1.19e17T2 1 + 3.62e8T + 1.19e17T^{2}
83 1+2.56e8T+1.86e17T2 1 + 2.56e8T + 1.86e17T^{2}
89 17.32e8T+3.50e17T2 1 - 7.32e8T + 3.50e17T^{2}
97 1+2.33e8iT7.60e17T2 1 + 2.33e8iT - 7.60e17T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.14471516472393140718120188782, −9.873990463128710952078723463920, −8.412477134349977546943855874851, −7.63119292742937022006848996882, −6.74524648077229300560143729261, −5.61192559520140008683345926448, −5.30650312979133634960231573400, −3.37357298102064781164578246180, −2.45036850243422958145537490433, −1.33686365042867680018281314550, 0.45923721410385796047079988224, 1.25800571251061845940148500776, 2.49875105321338939995313811091, 3.38578850722041178655770119295, 4.35467374873729417454261812019, 6.03647217165897199244409674808, 6.59003200469797116757978803884, 7.64906143520517208804001337968, 9.044568049559795365344686475803, 9.789291157330055211239984523169

Graph of the ZZ-function along the critical line