L(s) = 1 | − 38.5i·2-s − 971.·4-s + 625·5-s + (5.53e3 + 3.11e3i)7-s + 1.77e4i·8-s − 2.40e4i·10-s + 3.58e4i·11-s − 1.02e5i·13-s + (1.20e5 − 2.13e5i)14-s + 1.84e5·16-s + 2.29e5·17-s − 4.84e5i·19-s − 6.07e5·20-s + 1.38e6·22-s + 6.86e5i·23-s + ⋯ |
L(s) = 1 | − 1.70i·2-s − 1.89·4-s + 0.447·5-s + (0.871 + 0.490i)7-s + 1.52i·8-s − 0.761i·10-s + 0.738i·11-s − 1.00i·13-s + (0.835 − 1.48i)14-s + 0.705·16-s + 0.667·17-s − 0.852i·19-s − 0.848·20-s + 1.25·22-s + 0.511i·23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(0.102+0.994i)Λ(10−s)
Λ(s)=(=(315s/2ΓC(s+9/2)L(s)(0.102+0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
0.102+0.994i
|
Analytic conductor: |
162.236 |
Root analytic conductor: |
12.7372 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :9/2), 0.102+0.994i)
|
Particular Values
L(5) |
≈ |
2.371286997 |
L(21) |
≈ |
2.371286997 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−625T |
| 7 | 1+(−5.53e3−3.11e3i)T |
good | 2 | 1+38.5iT−512T2 |
| 11 | 1−3.58e4iT−2.35e9T2 |
| 13 | 1+1.02e5iT−1.06e10T2 |
| 17 | 1−2.29e5T+1.18e11T2 |
| 19 | 1+4.84e5iT−3.22e11T2 |
| 23 | 1−6.86e5iT−1.80e12T2 |
| 29 | 1−2.83e6iT−1.45e13T2 |
| 31 | 1−2.96e6iT−2.64e13T2 |
| 37 | 1+1.64e7T+1.29e14T2 |
| 41 | 1+1.37e7T+3.27e14T2 |
| 43 | 1−1.57e7T+5.02e14T2 |
| 47 | 1−2.20e7T+1.11e15T2 |
| 53 | 1+5.73e7iT−3.29e15T2 |
| 59 | 1−2.98e7T+8.66e15T2 |
| 61 | 1−2.12e8iT−1.16e16T2 |
| 67 | 1−1.05e8T+2.72e16T2 |
| 71 | 1+1.24e8iT−4.58e16T2 |
| 73 | 1−2.55e8iT−5.88e16T2 |
| 79 | 1−2.67e8T+1.19e17T2 |
| 83 | 1+1.62e8T+1.86e17T2 |
| 89 | 1−7.43e8T+3.50e17T2 |
| 97 | 1−4.95e8iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18885112059590775438427041695, −9.218756210812206099690016817622, −8.439685957182477746545269714005, −7.17664785418072721357667174647, −5.44594025459696092739526175524, −4.83722748177342493068835648676, −3.52887783974627961781875822687, −2.55410709127012544809458994702, −1.70266195000373315928197998298, −0.835573627598076713625921363873,
0.57883155196224265992619547019, 1.89304964127468880341454734600, 3.77863896646317023136021454396, 4.76980448304055216812849689468, 5.67933827082066483169635069544, 6.47160611563778908000823095921, 7.44994197870128616483144567906, 8.212604192504959318699445740468, 8.985249635416960198321912131714, 10.03849842605192585883297545078