L(s) = 1 | + (−0.956 − 1.65i)2-s + (−0.830 + 1.43i)4-s + (−1.54 + 1.61i)5-s + (1.11 − 2.39i)7-s − 0.650·8-s + (4.15 + 1.00i)10-s + (−2.79 − 1.61i)11-s − 4.86·13-s + (−5.04 + 0.439i)14-s + (2.28 + 3.95i)16-s + (−0.631 − 0.364i)17-s + (−6.81 + 3.93i)19-s + (−1.04 − 3.56i)20-s + 6.17i·22-s + (2.43 + 4.21i)23-s + ⋯ |
L(s) = 1 | + (−0.676 − 1.17i)2-s + (−0.415 + 0.718i)4-s + (−0.689 + 0.723i)5-s + (0.422 − 0.906i)7-s − 0.229·8-s + (1.31 + 0.318i)10-s + (−0.842 − 0.486i)11-s − 1.34·13-s + (−1.34 + 0.117i)14-s + (0.570 + 0.988i)16-s + (−0.153 − 0.0884i)17-s + (−1.56 + 0.902i)19-s + (−0.234 − 0.796i)20-s + 1.31i·22-s + (0.507 + 0.879i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.557 - 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0786014 + 0.147490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0786014 + 0.147490i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.54 - 1.61i)T \) |
| 7 | \( 1 + (-1.11 + 2.39i)T \) |
good | 2 | \( 1 + (0.956 + 1.65i)T + (-1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (2.79 + 1.61i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.86T + 13T^{2} \) |
| 17 | \( 1 + (0.631 + 0.364i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.81 - 3.93i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.43 - 4.21i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.75iT - 29T^{2} \) |
| 31 | \( 1 + (1.23 + 0.714i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.74 + 1.58i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.40T + 41T^{2} \) |
| 43 | \( 1 - 6.42iT - 43T^{2} \) |
| 47 | \( 1 + (4.21 - 2.43i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.760 - 1.31i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.15 + 5.45i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.05 - 1.18i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (9.63 + 5.56i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 10.1iT - 71T^{2} \) |
| 73 | \( 1 + (-6.91 + 11.9i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.99 + 3.44i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 4.19iT - 83T^{2} \) |
| 89 | \( 1 + (-5.63 - 9.76i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91149138657764704108660378394, −10.38533100045486043805009776843, −9.549361580553133393060760734698, −8.129487552532815984334667232789, −7.61252535342014103729407528286, −6.24787316823115470402671551018, −4.53231417966453697689878627617, −3.35380211681026482900260750646, −2.17415096035057271236499659581, −0.13903963184807509749755232770,
2.54851810698838254725226899564, 4.69446053045142824261650806906, 5.33207084956978544622069200864, 6.77782996607988014252542531610, 7.55147223321698243265918763851, 8.585548792940588613143102876837, 8.872741860591462669297785783294, 10.13280474775578537724341388480, 11.37627336968835103070580492877, 12.46622799604611728943784618597