L(s) = 1 | + (0.956 − 1.65i)2-s + (−0.830 − 1.43i)4-s + (2.17 + 0.526i)5-s + (−1.11 − 2.39i)7-s + 0.650·8-s + (2.95 − 3.09i)10-s + (−2.79 + 1.61i)11-s + 4.86·13-s + (−5.04 − 0.439i)14-s + (2.28 − 3.95i)16-s + (0.631 − 0.364i)17-s + (−6.81 − 3.93i)19-s + (−1.04 − 3.56i)20-s + 6.17i·22-s + (−2.43 + 4.21i)23-s + ⋯ |
L(s) = 1 | + (0.676 − 1.17i)2-s + (−0.415 − 0.718i)4-s + (0.971 + 0.235i)5-s + (−0.422 − 0.906i)7-s + 0.229·8-s + (0.933 − 0.979i)10-s + (−0.842 + 0.486i)11-s + 1.34·13-s + (−1.34 − 0.117i)14-s + (0.570 − 0.988i)16-s + (0.153 − 0.0884i)17-s + (−1.56 − 0.902i)19-s + (−0.234 − 0.796i)20-s + 1.31i·22-s + (−0.507 + 0.879i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0197 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0197 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.45170 - 1.48065i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45170 - 1.48065i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.17 - 0.526i)T \) |
| 7 | \( 1 + (1.11 + 2.39i)T \) |
good | 2 | \( 1 + (-0.956 + 1.65i)T + (-1 - 1.73i)T^{2} \) |
| 11 | \( 1 + (2.79 - 1.61i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.86T + 13T^{2} \) |
| 17 | \( 1 + (-0.631 + 0.364i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (6.81 + 3.93i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.43 - 4.21i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 7.75iT - 29T^{2} \) |
| 31 | \( 1 + (1.23 - 0.714i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.74 + 1.58i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.40T + 41T^{2} \) |
| 43 | \( 1 - 6.42iT - 43T^{2} \) |
| 47 | \( 1 + (-4.21 - 2.43i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.760 - 1.31i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.15 - 5.45i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.05 + 1.18i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.63 + 5.56i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 10.1iT - 71T^{2} \) |
| 73 | \( 1 + (6.91 + 11.9i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.99 - 3.44i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.19iT - 83T^{2} \) |
| 89 | \( 1 + (-5.63 + 9.76i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18284981885659461660370047680, −10.64774345523484478977378256566, −10.06211453165158485066861661514, −8.910842215734958932790950312195, −7.44269473507319003834028291436, −6.37682033685997001632823805616, −5.13508783714197293199681780418, −3.97345701074463450974199139827, −2.87606741865795254324198312577, −1.57896325303136057946758594972,
2.18575284212352528117785277170, 3.95201052215028105511450368186, 5.35894658307984785960842382070, 6.01291214552258039353966366116, 6.52351711743757532935404234175, 8.210182363460170633861429760396, 8.633544098276879309084888246496, 10.06013660617471333148007478062, 10.80417982557768073264281555854, 12.32674224571106019967031030739