Properties

Label 2-315-1.1-c3-0-13
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $18.5856$
Root an. cond. $4.31110$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.53·2-s + 12.5·4-s − 5·5-s − 7·7-s − 20.5·8-s + 22.6·10-s + 19.0·11-s − 2.93·13-s + 31.7·14-s − 7.21·16-s + 6.49·17-s − 5.43·19-s − 62.6·20-s − 86.3·22-s − 49.3·23-s + 25·25-s + 13.3·26-s − 87.7·28-s + 291.·29-s + 244.·31-s + 196.·32-s − 29.4·34-s + 35·35-s − 193.·37-s + 24.6·38-s + 102.·40-s − 315.·41-s + ⋯
L(s)  = 1  − 1.60·2-s + 1.56·4-s − 0.447·5-s − 0.377·7-s − 0.907·8-s + 0.716·10-s + 0.522·11-s − 0.0626·13-s + 0.605·14-s − 0.112·16-s + 0.0927·17-s − 0.0656·19-s − 0.700·20-s − 0.837·22-s − 0.447·23-s + 0.200·25-s + 0.100·26-s − 0.592·28-s + 1.86·29-s + 1.41·31-s + 1.08·32-s − 0.148·34-s + 0.169·35-s − 0.858·37-s + 0.105·38-s + 0.405·40-s − 1.20·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(18.5856\)
Root analytic conductor: \(4.31110\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 + 7T \)
good2 \( 1 + 4.53T + 8T^{2} \)
11 \( 1 - 19.0T + 1.33e3T^{2} \)
13 \( 1 + 2.93T + 2.19e3T^{2} \)
17 \( 1 - 6.49T + 4.91e3T^{2} \)
19 \( 1 + 5.43T + 6.85e3T^{2} \)
23 \( 1 + 49.3T + 1.21e4T^{2} \)
29 \( 1 - 291.T + 2.43e4T^{2} \)
31 \( 1 - 244.T + 2.97e4T^{2} \)
37 \( 1 + 193.T + 5.06e4T^{2} \)
41 \( 1 + 315.T + 6.89e4T^{2} \)
43 \( 1 + 300.T + 7.95e4T^{2} \)
47 \( 1 + 86.5T + 1.03e5T^{2} \)
53 \( 1 + 509.T + 1.48e5T^{2} \)
59 \( 1 - 83.3T + 2.05e5T^{2} \)
61 \( 1 + 5.25T + 2.26e5T^{2} \)
67 \( 1 - 205.T + 3.00e5T^{2} \)
71 \( 1 + 1.00e3T + 3.57e5T^{2} \)
73 \( 1 + 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 863.T + 4.93e5T^{2} \)
83 \( 1 + 1.33e3T + 5.71e5T^{2} \)
89 \( 1 + 326.T + 7.04e5T^{2} \)
97 \( 1 - 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34301194838350969192057189641, −9.912917910576036660002778366986, −8.733023208634280286081840199193, −8.220907487845438659299340479149, −7.08460507343796884953169348500, −6.34244154936345227806499879321, −4.56804878502591952579584650807, −2.99071596766604524419226575158, −1.38628743103439624835248470911, 0, 1.38628743103439624835248470911, 2.99071596766604524419226575158, 4.56804878502591952579584650807, 6.34244154936345227806499879321, 7.08460507343796884953169348500, 8.220907487845438659299340479149, 8.733023208634280286081840199193, 9.912917910576036660002778366986, 10.34301194838350969192057189641

Graph of the $Z$-function along the critical line