Properties

Label 2-315-1.1-c3-0-24
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $18.5856$
Root an. cond. $4.31110$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.56·2-s + 22.9·4-s + 5·5-s − 7·7-s + 83.0·8-s + 27.8·10-s + 33.6·11-s − 38.3·13-s − 38.9·14-s + 278.·16-s − 65.7·17-s + 33.3·19-s + 114.·20-s + 186.·22-s − 207.·23-s + 25·25-s − 213.·26-s − 160.·28-s + 189.·29-s + 202.·31-s + 883.·32-s − 365.·34-s − 35·35-s − 16.5·37-s + 185.·38-s + 415.·40-s − 388.·41-s + ⋯
L(s)  = 1  + 1.96·2-s + 2.86·4-s + 0.447·5-s − 0.377·7-s + 3.66·8-s + 0.879·10-s + 0.921·11-s − 0.818·13-s − 0.743·14-s + 4.34·16-s − 0.937·17-s + 0.403·19-s + 1.28·20-s + 1.81·22-s − 1.88·23-s + 0.200·25-s − 1.60·26-s − 1.08·28-s + 1.21·29-s + 1.17·31-s + 4.88·32-s − 1.84·34-s − 0.169·35-s − 0.0734·37-s + 0.792·38-s + 1.64·40-s − 1.48·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(18.5856\)
Root analytic conductor: \(4.31110\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.746874395\)
\(L(\frac12)\) \(\approx\) \(6.746874395\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 + 7T \)
good2 \( 1 - 5.56T + 8T^{2} \)
11 \( 1 - 33.6T + 1.33e3T^{2} \)
13 \( 1 + 38.3T + 2.19e3T^{2} \)
17 \( 1 + 65.7T + 4.91e3T^{2} \)
19 \( 1 - 33.3T + 6.85e3T^{2} \)
23 \( 1 + 207.T + 1.21e4T^{2} \)
29 \( 1 - 189.T + 2.43e4T^{2} \)
31 \( 1 - 202.T + 2.97e4T^{2} \)
37 \( 1 + 16.5T + 5.06e4T^{2} \)
41 \( 1 + 388.T + 6.89e4T^{2} \)
43 \( 1 - 41.8T + 7.95e4T^{2} \)
47 \( 1 + 368.T + 1.03e5T^{2} \)
53 \( 1 + 458.T + 1.48e5T^{2} \)
59 \( 1 + 256.T + 2.05e5T^{2} \)
61 \( 1 + 123.T + 2.26e5T^{2} \)
67 \( 1 + 336.T + 3.00e5T^{2} \)
71 \( 1 - 453.T + 3.57e5T^{2} \)
73 \( 1 - 22.0T + 3.89e5T^{2} \)
79 \( 1 - 385.T + 4.93e5T^{2} \)
83 \( 1 + 23.7T + 5.71e5T^{2} \)
89 \( 1 - 1.48e3T + 7.04e5T^{2} \)
97 \( 1 - 51.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86058658982462498008428125637, −10.56743904179075894489223368934, −9.710044077043632372652342637899, −8.000205946591197739544235519601, −6.65690065924742606406951462220, −6.31003995061734808623821327526, −5.03730138628468170603228142090, −4.17882472289199866650657227982, −2.98483500504891128244760295134, −1.83275418414447507296403881605, 1.83275418414447507296403881605, 2.98483500504891128244760295134, 4.17882472289199866650657227982, 5.03730138628468170603228142090, 6.31003995061734808623821327526, 6.65690065924742606406951462220, 8.000205946591197739544235519601, 9.710044077043632372652342637899, 10.56743904179075894489223368934, 11.86058658982462498008428125637

Graph of the $Z$-function along the critical line