L(s) = 1 | − 0.826·2-s − 7.31·4-s + (−10.4 − 4.04i)5-s + (17.7 − 5.14i)7-s + 12.6·8-s + (8.61 + 3.34i)10-s − 28.3i·11-s − 29.3·13-s + (−14.7 + 4.25i)14-s + 48.0·16-s − 45.3i·17-s − 49.0i·19-s + (76.2 + 29.6i)20-s + 23.4i·22-s − 136.·23-s + ⋯ |
L(s) = 1 | − 0.292·2-s − 0.914·4-s + (−0.932 − 0.362i)5-s + (0.960 − 0.277i)7-s + 0.559·8-s + (0.272 + 0.105i)10-s − 0.778i·11-s − 0.627·13-s + (−0.280 + 0.0811i)14-s + 0.750·16-s − 0.646i·17-s − 0.591i·19-s + (0.852 + 0.331i)20-s + 0.227i·22-s − 1.23·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 - 0.864i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.502 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.2428210338\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2428210338\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (10.4 + 4.04i)T \) |
| 7 | \( 1 + (-17.7 + 5.14i)T \) |
good | 2 | \( 1 + 0.826T + 8T^{2} \) |
| 11 | \( 1 + 28.3iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 29.3T + 2.19e3T^{2} \) |
| 17 | \( 1 + 45.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 49.0iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 136.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 132. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 237. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 431. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 219.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 426. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 446. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 330.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 236.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 574. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 104. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 814. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 292.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 37.4T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.25e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.40e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 107.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54683810961082063595596855636, −10.62399607392764896938707977927, −9.560853863486475419512725058516, −8.440502898784301982325357266855, −8.110908550080151424895355757939, −6.97362099964949128808734350167, −5.14782099611525562369958053464, −4.61237366956553256741756246597, −3.35889932284014611707337475802, −1.18489497336062862513509619114,
0.11673905233283891335809438946, 1.99988981796183079857510182301, 3.92117914785178784416455515907, 4.57770299076301655724386153585, 5.85088084329778998193112186280, 7.58895901426667633099145419610, 7.88071763849232992918807818470, 8.955458980294667815328387973934, 9.993420524956472695831499543094, 10.81377299253427749670967693751