L(s) = 1 | + 3·2-s + 12·4-s + 25·5-s − 32·7-s + 29·8-s + 75·10-s + 43·11-s + 246·13-s − 96·14-s + 81·16-s + 124·17-s − 37·19-s + 300·20-s + 129·22-s + 77·23-s + 250·25-s + 738·26-s − 384·28-s − 720·29-s − 314·31-s + 128·32-s + 372·34-s − 800·35-s − 225·37-s − 111·38-s + 725·40-s − 682·41-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 3/2·4-s + 2.23·5-s − 1.72·7-s + 1.28·8-s + 2.37·10-s + 1.17·11-s + 5.24·13-s − 1.83·14-s + 1.26·16-s + 1.76·17-s − 0.446·19-s + 3.35·20-s + 1.25·22-s + 0.698·23-s + 2·25-s + 5.56·26-s − 2.59·28-s − 4.61·29-s − 1.81·31-s + 0.707·32-s + 1.87·34-s − 3.86·35-s − 0.999·37-s − 0.473·38-s + 2.86·40-s − 2.59·41-s + ⋯ |
Λ(s)=(=((320⋅510⋅710)s/2ΓC(s)10L(s)Λ(4−s)
Λ(s)=(=((320⋅510⋅710)s/2ΓC(s+3/2)10L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
7.438491794 |
L(21) |
≈ |
7.438491794 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | (1−pT+p2T2)5 |
| 7 | 1+32T+157T2−708T3−17741pT4−108076p2T5−17741p4T6−708p6T7+157p9T8+32p12T9+p15T10 |
good | 2 | 1−3T−3T2+p4T3−3pT4+7p2T5+43p4T6−191p4T7−35p3T8+297p5T9+97p4T10+297p8T11−35p9T12−191p13T13+43p16T14+7p17T15−3p19T16+p25T17−3p24T18−3p27T19+p30T20 |
| 11 | 1−43T−1018T2+184703T3−5534545T4−50464234T5+12689409820T6−504310395110T7+6113678102337T8+534835812328359T9−31491030462599406T10+534835812328359p3T11+6113678102337p6T12−504310395110p9T13+12689409820p12T14−50464234p15T15−5534545p18T16+184703p21T17−1018p24T18−43p27T19+p30T20 |
| 13 | (1−123T+9911T2−514334T3+26762121T4−1198576829T5+26762121p3T6−514334p6T7+9911p9T8−123p12T9+p15T10)2 |
| 17 | 1−124T−13393T2+1317332T3+223226567T4−13464256864T5−1978738682246T6+55979698376512T7+15589925656986105T8−163083275563038492T9−82630650088387671747T10−163083275563038492p3T11+15589925656986105p6T12+55979698376512p9T13−1978738682246p12T14−13464256864p15T15+223226567p18T16+1317332p21T17−13393p24T18−124p27T19+p30T20 |
| 19 | 1+37T−21904T2+94257T3+282384930T4−7197449657T5−2269051553590T6+4234927397735pT7+13988764492770637T8−261602777288079214T9−83432723067784841076T10−261602777288079214p3T11+13988764492770637p6T12+4234927397735p10T13−2269051553590p12T14−7197449657p15T15+282384930p18T16+94257p21T17−21904p24T18+37p27T19+p30T20 |
| 23 | 1−77T−1762pT2+3164693T3+912830895T4−63875502782T5−14990398295836T6+743770274612358T7+208475820275483873T8−3628111953906564439T9−26⋯78T10−3628111953906564439p3T11+208475820275483873p6T12+743770274612358p9T13−14990398295836p12T14−63875502782p15T15+912830895p18T16+3164693p21T17−1762p25T18−77p27T19+p30T20 |
| 29 | (1+360T+130325T2+27401400T3+6029894570T4+923796431136T5+6029894570p3T6+27401400p6T7+130325p9T8+360p12T9+p15T10)2 |
| 31 | 1+314T−25093T2−11954934T3+865517672T4+110001595950T5−90893388430871T6−6546943301723310T7+2772893062489254731T8+16⋯96T9−56⋯12T10+16⋯96p3T11+2772893062489254731p6T12−6546943301723310p9T13−90893388430871p12T14+110001595950p15T15+865517672p18T16−11954934p21T17−25093p24T18+314p27T19+p30T20 |
| 37 | 1+225T−76286T2−2361973T3+6089794302T4−356399592229T5−68864532404144T6+56856556722394743T7−7573070672827671431T8−37⋯02T9+11⋯48T10−37⋯02p3T11−7573070672827671431p6T12+56856556722394743p9T13−68864532404144p12T14−356399592229p15T15+6089794302p18T16−2361973p21T17−76286p24T18+225p27T19+p30T20 |
| 41 | (1+341T+190073T2+39759328T3+16717012002T4+3155754961314T5+16717012002p3T6+39759328p6T7+190073p9T8+341p12T9+p15T10)2 |
| 43 | (1−32T+218617T2+27320644T3+18062796109T4+4794346174172T5+18062796109p3T6+27320644p6T7+218617p9T8−32p12T9+p15T10)2 |
| 47 | 1−25T−227610T2+73101461T3+24026193611T4−14842831799166T5+815012071632728T6+1726119131867110546T7−42⋯67T8−71⋯07T9+63⋯74T10−71⋯07p3T11−42⋯67p6T12+1726119131867110546p9T13+815012071632728p12T14−14842831799166p15T15+24026193611p18T16+73101461p21T17−227610p24T18−25p27T19+p30T20 |
| 53 | 1+317T+36608T2−65490883T3−43515633637T4−7415247471298T5+6175303105639036T6+2555693600931772834T7+73⋯25T8−23⋯61T9−17⋯72T10−23⋯61p3T11+73⋯25p6T12+2555693600931772834p9T13+6175303105639036p12T14−7415247471298p15T15−43515633637p18T16−65490883p21T17+36608p24T18+317p27T19+p30T20 |
| 59 | 1−676T−259179T2+22928420T3+159667268999T4+15850073806032T5−23985994336882042T6−12685589247886825904T7+22⋯61T8+68⋯72T9+55⋯91T10+68⋯72p3T11+22⋯61p6T12−12685589247886825904p9T13−23985994336882042p12T14+15850073806032p15T15+159667268999p18T16+22928420p21T17−259179p24T18−676p27T19+p30T20 |
| 61 | 1−188T−431481T2+373005124T3+29297127399T4−121648932752488T5+38284746381984330T6+12628932742569504968T7−11⋯39T8−36⋯84T9+15⋯05T10−36⋯84p3T11−11⋯39p6T12+12628932742569504968p9T13+38284746381984330p12T14−121648932752488p15T15+29297127399p18T16+373005124p21T17−431481p24T18−188p27T19+p30T20 |
| 67 | 1−1776T+1302831T2−795082424T3+523494226340T4−209497188661456T5+62623175581904481T6−31980651664564177744T7+13⋯23T8+42⋯28T9−47⋯52T10+42⋯28p3T11+13⋯23p6T12−31980651664564177744p9T13+62623175581904481p12T14−209497188661456p15T15+523494226340p18T16−795082424p21T17+1302831p24T18−1776p27T19+p30T20 |
| 71 | (1−6T+797207T2+67070712T3+425455729610T4+37303525976244T5+425455729610p3T6+67070712p6T7+797207p9T8−6p12T9+p15T10)2 |
| 73 | 1+2006T+2213445T2+2068190842T3+22153879952pT4+980484252789530T5+644957368099789599T6+49⋯02T7+36⋯03T8+27⋯32T9+19⋯20T10+27⋯32p3T11+36⋯03p6T12+49⋯02p9T13+644957368099789599p12T14+980484252789530p15T15+22153879952p19T16+2068190842p21T17+2213445p24T18+2006p27T19+p30T20 |
| 79 | 1+200T−1905761T2−521788304T3+2022855950280T4+568166623235112T5−1467320191398068699T6−32⋯56T7+10⋯57pT8+73⋯56T9−42⋯44T10+73⋯56p3T11+10⋯57p7T12−32⋯56p9T13−1467320191398068699p12T14+568166623235112p15T15+2022855950280p18T16−521788304p21T17−1905761p24T18+200p27T19+p30T20 |
| 83 | (1−4pT+1330763T2−251179960T3+1196075575498T4−287374399354632T5+1196075575498p3T6−251179960p6T7+1330763p9T8−4p13T9+p15T10)2 |
| 89 | 1−894T−1501253T2+1203783426T3+1217576227911T4−488918737763772T5−941190453323848894T6−20⋯20T7+93⋯81T8+16⋯42T9−80⋯11T10+16⋯42p3T11+93⋯81p6T12−20⋯20p9T13−941190453323848894p12T14−488918737763772p15T15+1217576227911p18T16+1203783426p21T17−1501253p24T18−894p27T19+p30T20 |
| 97 | (1+576T+2417013T2+1510894720T3+3259586132218T4+2005403804499072T5+3259586132218p3T6+1510894720p6T7+2417013p9T8+576p12T9+p15T10)2 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.87898304460970020092644034689, −3.76097186027411812682173719988, −3.65565385596705709332454895149, −3.60945312069074178779110713126, −3.46351798864721185164565591722, −3.31219610970595203910339479328, −3.26976692623893243098452479620, −3.26433742236882016589133446504, −3.05616728402439692331794970803, −2.83082883737908951855221857088, −2.56073137857304299641315079139, −2.35261879495777723366847468106, −2.26513712783988032839230661617, −2.18523721576198602318542350191, −1.93648056786226328864048893963, −1.78208781863390981423076064624, −1.64838395338339172609851575023, −1.53251230945532898159516175568, −1.40894324555841698362598519748, −1.16125601582875576190518848833, −1.13648663563468330559242619539, −1.08311777802858820367562959432, −0.66299987889855824141617531863, −0.28791064512092849066585180742, −0.095864767232451704997591039998,
0.095864767232451704997591039998, 0.28791064512092849066585180742, 0.66299987889855824141617531863, 1.08311777802858820367562959432, 1.13648663563468330559242619539, 1.16125601582875576190518848833, 1.40894324555841698362598519748, 1.53251230945532898159516175568, 1.64838395338339172609851575023, 1.78208781863390981423076064624, 1.93648056786226328864048893963, 2.18523721576198602318542350191, 2.26513712783988032839230661617, 2.35261879495777723366847468106, 2.56073137857304299641315079139, 2.83082883737908951855221857088, 3.05616728402439692331794970803, 3.26433742236882016589133446504, 3.26976692623893243098452479620, 3.31219610970595203910339479328, 3.46351798864721185164565591722, 3.60945312069074178779110713126, 3.65565385596705709332454895149, 3.76097186027411812682173719988, 3.87898304460970020092644034689
Plot not available for L-functions of degree greater than 10.