L(s) = 1 | + (−0.720 − 1.24i)2-s + (2.96 − 5.13i)4-s + (2.5 + 4.33i)5-s + (18.2 + 3.22i)7-s − 20.0·8-s + (3.60 − 6.23i)10-s + (−5.12 + 8.87i)11-s + 64.1·13-s + (−9.11 − 25.0i)14-s + (−9.25 − 16.0i)16-s + (10.9 − 18.8i)17-s + (55.4 + 96.1i)19-s + 29.6·20-s + 14.7·22-s + (29.9 + 51.8i)23-s + ⋯ |
L(s) = 1 | + (−0.254 − 0.441i)2-s + (0.370 − 0.641i)4-s + (0.223 + 0.387i)5-s + (0.984 + 0.174i)7-s − 0.886·8-s + (0.113 − 0.197i)10-s + (−0.140 + 0.243i)11-s + 1.36·13-s + (−0.173 − 0.478i)14-s + (−0.144 − 0.250i)16-s + (0.155 − 0.269i)17-s + (0.670 + 1.16i)19-s + 0.331·20-s + 0.143·22-s + (0.271 + 0.470i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.723 + 0.690i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.723 + 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.147719713\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.147719713\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (-18.2 - 3.22i)T \) |
good | 2 | \( 1 + (0.720 + 1.24i)T + (-4 + 6.92i)T^{2} \) |
| 11 | \( 1 + (5.12 - 8.87i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 64.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-10.9 + 18.8i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-55.4 - 96.1i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-29.9 - 51.8i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 22.2T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-34.9 + 60.4i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (176. + 305. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 378.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 30.1T + 7.95e4T^{2} \) |
| 47 | \( 1 + (20.7 + 35.9i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-252. + 437. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-269. + 466. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (176. + 305. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-116. + 200. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 723.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (529. - 917. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-83.4 - 144. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 924.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (496. + 859. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 744.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13106533737730316009423346351, −10.32400375547037583762688443785, −9.422826659486779019818717007711, −8.380582442317214275061752229335, −7.28403656645745840426146159560, −6.03712766024929907060919148688, −5.31386904898557916011420886407, −3.65565385596705709332454895149, −2.18523721576198602318542350191, −1.13648663563468330559242619539,
1.16125601582875576190518848833, 2.83082883737908951855221857088, 4.21561100997831392673047587461, 5.49451570324665608783412067722, 6.58027969511954511573682831910, 7.62401951147319552091452851653, 8.491224079194700445354153697507, 9.036417345528688412592510009269, 10.58157506024559806494580267775, 11.34403478066675768521314643329