L(s) = 1 | + 2·2-s + 3·4-s − 2·7-s + 4·8-s + 4·13-s − 4·14-s + 5·16-s − 4·17-s + 8·19-s + 4·23-s + 8·26-s − 6·28-s − 4·29-s + 8·31-s + 6·32-s − 8·34-s + 4·37-s + 16·38-s + 12·41-s + 8·43-s + 8·46-s − 8·47-s + 3·49-s + 12·52-s + 12·53-s − 8·56-s − 8·58-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s − 0.755·7-s + 1.41·8-s + 1.10·13-s − 1.06·14-s + 5/4·16-s − 0.970·17-s + 1.83·19-s + 0.834·23-s + 1.56·26-s − 1.13·28-s − 0.742·29-s + 1.43·31-s + 1.06·32-s − 1.37·34-s + 0.657·37-s + 2.59·38-s + 1.87·41-s + 1.21·43-s + 1.17·46-s − 1.16·47-s + 3/7·49-s + 1.66·52-s + 1.64·53-s − 1.06·56-s − 1.05·58-s + ⋯ |
Λ(s)=(=(9922500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(9922500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
9922500
= 22⋅34⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
632.667 |
Root analytic conductor: |
5.01526 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 9922500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
8.818038026 |
L(21) |
≈ |
8.818038026 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | | 1 |
| 7 | C1 | (1+T)2 |
good | 11 | C22 | 1−2T2+p2T4 |
| 13 | D4 | 1−4T+24T2−4pT3+p2T4 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | D4 | 1−8T+48T2−8pT3+p2T4 |
| 23 | D4 | 1−4T+26T2−4pT3+p2T4 |
| 29 | D4 | 1+4T+38T2+4pT3+p2T4 |
| 31 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | D4 | 1−12T+94T2−12pT3+p2T4 |
| 43 | D4 | 1−8T+78T2−8pT3+p2T4 |
| 47 | D4 | 1+8T+86T2+8pT3+p2T4 |
| 53 | D4 | 1−12T+118T2−12pT3+p2T4 |
| 59 | D4 | 1−8T+128T2−8pT3+p2T4 |
| 61 | D4 | 1−12T+152T2−12pT3+p2T4 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | D4 | 1−12T+154T2−12pT3+p2T4 |
| 73 | D4 | 1+4T+126T2+4pT3+p2T4 |
| 79 | D4 | 1−4T+138T2−4pT3+p2T4 |
| 83 | C22 | 1+160T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | D4 | 1−12T+134T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.718500198785599827768234947999, −8.671501638574013276719841265501, −7.888616375787963028727798733286, −7.60042568897851394711821255594, −7.30888466539120662197892038024, −6.90059599289980208404241258947, −6.32809171192839689921668176380, −6.30278614976401395409516296359, −5.81661532101620633712824348602, −5.45890174961157953891347456045, −4.97905503640449219249066760321, −4.68742545986080523005139201866, −4.00625611932096696610024124243, −3.88434872757924766026719053158, −3.38127715336835055545745174316, −2.94152371679574146245178227398, −2.49277899131395804471994601550, −2.12373740570617103515999382046, −1.05784179025911638201657044668, −0.886049184299352588669362709967,
0.886049184299352588669362709967, 1.05784179025911638201657044668, 2.12373740570617103515999382046, 2.49277899131395804471994601550, 2.94152371679574146245178227398, 3.38127715336835055545745174316, 3.88434872757924766026719053158, 4.00625611932096696610024124243, 4.68742545986080523005139201866, 4.97905503640449219249066760321, 5.45890174961157953891347456045, 5.81661532101620633712824348602, 6.30278614976401395409516296359, 6.32809171192839689921668176380, 6.90059599289980208404241258947, 7.30888466539120662197892038024, 7.60042568897851394711821255594, 7.888616375787963028727798733286, 8.671501638574013276719841265501, 8.718500198785599827768234947999