L(s) = 1 | + i·2-s − 4-s + i·7-s − i·8-s − 2·11-s + i·13-s − 14-s + 16-s − i·17-s − 4·19-s − 2i·22-s − 7i·23-s − 26-s − i·28-s + 29-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.377i·7-s − 0.353i·8-s − 0.603·11-s + 0.277i·13-s − 0.267·14-s + 0.250·16-s − 0.242i·17-s − 0.917·19-s − 0.426i·22-s − 1.45i·23-s − 0.196·26-s − 0.188i·28-s + 0.185·29-s + ⋯ |
Λ(s)=(=(3150s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(3150s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3150
= 2⋅32⋅52⋅7
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
25.1528 |
Root analytic conductor: |
5.01526 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3150(2899,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3150, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.098415133 |
L(21) |
≈ |
1.098415133 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1 |
| 7 | 1−iT |
good | 11 | 1+2T+11T2 |
| 13 | 1−iT−13T2 |
| 17 | 1+iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+7iT−23T2 |
| 29 | 1−T+29T2 |
| 31 | 1−3T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1−3T+41T2 |
| 43 | 1+iT−43T2 |
| 47 | 1+12iT−47T2 |
| 53 | 1+11iT−53T2 |
| 59 | 1+3T+59T2 |
| 61 | 1−5T+61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+14iT−73T2 |
| 79 | 1−2T+79T2 |
| 83 | 1−3iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.441209391517775762363458788091, −8.056352970138622546857262447687, −6.93824515043766526694219211083, −6.51388161801017148728456699899, −5.62442206046540222346720984564, −4.85295102670311579135486305208, −4.16767890302369733025766307495, −2.98695522803573316007910573951, −2.04139695684873212623534625709, −0.38891980352997469944515553764,
1.03404631717384617889362410988, 2.17203488202553299466463835934, 3.08103096442649605749197867140, 3.96838017352575114936592203683, 4.71876505107304421530976423227, 5.62609604427547737567948586981, 6.36490624378062815697104960504, 7.52875966659886035518224209237, 7.917622718233711942763675610896, 8.902186558754098285799163241864