L(s) = 1 | + 3.91·5-s + 3.25·7-s + (1.62 + 2.89i)11-s − 0.831i·13-s − 6.58i·17-s − 1.44·19-s − 0.691i·23-s + 10.3·25-s − 6.15i·29-s − 6.70i·31-s + 12.7·35-s − 6.70·37-s + 3.32i·41-s + 9.62·43-s − 2.73i·47-s + ⋯ |
L(s) = 1 | + 1.74·5-s + 1.23·7-s + (0.490 + 0.871i)11-s − 0.230i·13-s − 1.59i·17-s − 0.331·19-s − 0.144i·23-s + 2.06·25-s − 1.14i·29-s − 1.20i·31-s + 2.15·35-s − 1.10·37-s + 0.519i·41-s + 1.46·43-s − 0.399i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 + 0.269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.963 + 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.215947671\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.215947671\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-1.62 - 2.89i)T \) |
good | 5 | \( 1 - 3.91T + 5T^{2} \) |
| 7 | \( 1 - 3.25T + 7T^{2} \) |
| 13 | \( 1 + 0.831iT - 13T^{2} \) |
| 17 | \( 1 + 6.58iT - 17T^{2} \) |
| 19 | \( 1 + 1.44T + 19T^{2} \) |
| 23 | \( 1 + 0.691iT - 23T^{2} \) |
| 29 | \( 1 + 6.15iT - 29T^{2} \) |
| 31 | \( 1 + 6.70iT - 31T^{2} \) |
| 37 | \( 1 + 6.70T + 37T^{2} \) |
| 41 | \( 1 - 3.32iT - 41T^{2} \) |
| 43 | \( 1 - 9.62T + 43T^{2} \) |
| 47 | \( 1 + 2.73iT - 47T^{2} \) |
| 53 | \( 1 + 1.56T + 53T^{2} \) |
| 59 | \( 1 - 3.42iT - 59T^{2} \) |
| 61 | \( 1 + 11.8iT - 61T^{2} \) |
| 67 | \( 1 - 11.9iT - 67T^{2} \) |
| 71 | \( 1 - 10.5iT - 71T^{2} \) |
| 73 | \( 1 + 3.62iT - 73T^{2} \) |
| 79 | \( 1 - 4.91T + 79T^{2} \) |
| 83 | \( 1 + 10.3T + 83T^{2} \) |
| 89 | \( 1 + 12.9T + 89T^{2} \) |
| 97 | \( 1 - 4.60T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.798530902840110518486037243649, −7.86750387482738919025157092066, −7.11048716010049902390093093883, −6.33359552653525661334760088269, −5.50522099737671647616209824692, −4.94845803767096239306602006591, −4.17112864984822609948844810160, −2.57677632317893657515815389498, −2.08972092321898283649317041324, −1.09457972611112948390443081280,
1.46143660557126922811598234409, 1.72759094300985484192400350724, 2.96749201552675547429038775703, 4.08444210041754274359545067154, 5.07836673301544125817236853328, 5.68295688427955764507017696830, 6.30145011778615249913629619271, 7.06627447628439570019050884829, 8.212452091083253534545902207111, 8.775578617728810185180027253396