L(s) = 1 | + 3.91·5-s + 3.25·7-s + (1.62 + 2.89i)11-s − 0.831i·13-s − 6.58i·17-s − 1.44·19-s − 0.691i·23-s + 10.3·25-s − 6.15i·29-s − 6.70i·31-s + 12.7·35-s − 6.70·37-s + 3.32i·41-s + 9.62·43-s − 2.73i·47-s + ⋯ |
L(s) = 1 | + 1.74·5-s + 1.23·7-s + (0.490 + 0.871i)11-s − 0.230i·13-s − 1.59i·17-s − 0.331·19-s − 0.144i·23-s + 2.06·25-s − 1.14i·29-s − 1.20i·31-s + 2.15·35-s − 1.10·37-s + 0.519i·41-s + 1.46·43-s − 0.399i·47-s + ⋯ |
Λ(s)=(=(3168s/2ΓC(s)L(s)(0.963+0.269i)Λ(2−s)
Λ(s)=(=(3168s/2ΓC(s+1/2)L(s)(0.963+0.269i)Λ(1−s)
Degree: |
2 |
Conductor: |
3168
= 25⋅32⋅11
|
Sign: |
0.963+0.269i
|
Analytic conductor: |
25.2966 |
Root analytic conductor: |
5.02957 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3168(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3168, ( :1/2), 0.963+0.269i)
|
Particular Values
L(1) |
≈ |
3.215947671 |
L(21) |
≈ |
3.215947671 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−1.62−2.89i)T |
good | 5 | 1−3.91T+5T2 |
| 7 | 1−3.25T+7T2 |
| 13 | 1+0.831iT−13T2 |
| 17 | 1+6.58iT−17T2 |
| 19 | 1+1.44T+19T2 |
| 23 | 1+0.691iT−23T2 |
| 29 | 1+6.15iT−29T2 |
| 31 | 1+6.70iT−31T2 |
| 37 | 1+6.70T+37T2 |
| 41 | 1−3.32iT−41T2 |
| 43 | 1−9.62T+43T2 |
| 47 | 1+2.73iT−47T2 |
| 53 | 1+1.56T+53T2 |
| 59 | 1−3.42iT−59T2 |
| 61 | 1+11.8iT−61T2 |
| 67 | 1−11.9iT−67T2 |
| 71 | 1−10.5iT−71T2 |
| 73 | 1+3.62iT−73T2 |
| 79 | 1−4.91T+79T2 |
| 83 | 1+10.3T+83T2 |
| 89 | 1+12.9T+89T2 |
| 97 | 1−4.60T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.798530902840110518486037243649, −7.86750387482738919025157092066, −7.11048716010049902390093093883, −6.33359552653525661334760088269, −5.50522099737671647616209824692, −4.94845803767096239306602006591, −4.17112864984822609948844810160, −2.57677632317893657515815389498, −2.08972092321898283649317041324, −1.09457972611112948390443081280,
1.46143660557126922811598234409, 1.72759094300985484192400350724, 2.96749201552675547429038775703, 4.08444210041754274359545067154, 5.07836673301544125817236853328, 5.68295688427955764507017696830, 6.30145011778615249913629619271, 7.06627447628439570019050884829, 8.212452091083253534545902207111, 8.775578617728810185180027253396