Properties

Label 2-3168-44.43-c1-0-53
Degree $2$
Conductor $3168$
Sign $0.963 + 0.269i$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.91·5-s + 3.25·7-s + (1.62 + 2.89i)11-s − 0.831i·13-s − 6.58i·17-s − 1.44·19-s − 0.691i·23-s + 10.3·25-s − 6.15i·29-s − 6.70i·31-s + 12.7·35-s − 6.70·37-s + 3.32i·41-s + 9.62·43-s − 2.73i·47-s + ⋯
L(s)  = 1  + 1.74·5-s + 1.23·7-s + (0.490 + 0.871i)11-s − 0.230i·13-s − 1.59i·17-s − 0.331·19-s − 0.144i·23-s + 2.06·25-s − 1.14i·29-s − 1.20i·31-s + 2.15·35-s − 1.10·37-s + 0.519i·41-s + 1.46·43-s − 0.399i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 + 0.269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.963 + 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $0.963 + 0.269i$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3168} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 0.963 + 0.269i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.215947671\)
\(L(\frac12)\) \(\approx\) \(3.215947671\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-1.62 - 2.89i)T \)
good5 \( 1 - 3.91T + 5T^{2} \)
7 \( 1 - 3.25T + 7T^{2} \)
13 \( 1 + 0.831iT - 13T^{2} \)
17 \( 1 + 6.58iT - 17T^{2} \)
19 \( 1 + 1.44T + 19T^{2} \)
23 \( 1 + 0.691iT - 23T^{2} \)
29 \( 1 + 6.15iT - 29T^{2} \)
31 \( 1 + 6.70iT - 31T^{2} \)
37 \( 1 + 6.70T + 37T^{2} \)
41 \( 1 - 3.32iT - 41T^{2} \)
43 \( 1 - 9.62T + 43T^{2} \)
47 \( 1 + 2.73iT - 47T^{2} \)
53 \( 1 + 1.56T + 53T^{2} \)
59 \( 1 - 3.42iT - 59T^{2} \)
61 \( 1 + 11.8iT - 61T^{2} \)
67 \( 1 - 11.9iT - 67T^{2} \)
71 \( 1 - 10.5iT - 71T^{2} \)
73 \( 1 + 3.62iT - 73T^{2} \)
79 \( 1 - 4.91T + 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 + 12.9T + 89T^{2} \)
97 \( 1 - 4.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.798530902840110518486037243649, −7.86750387482738919025157092066, −7.11048716010049902390093093883, −6.33359552653525661334760088269, −5.50522099737671647616209824692, −4.94845803767096239306602006591, −4.17112864984822609948844810160, −2.57677632317893657515815389498, −2.08972092321898283649317041324, −1.09457972611112948390443081280, 1.46143660557126922811598234409, 1.72759094300985484192400350724, 2.96749201552675547429038775703, 4.08444210041754274359545067154, 5.07836673301544125817236853328, 5.68295688427955764507017696830, 6.30145011778615249913629619271, 7.06627447628439570019050884829, 8.212452091083253534545902207111, 8.775578617728810185180027253396

Graph of the $Z$-function along the critical line