L(s) = 1 | − 1.86·5-s + 3.91·7-s + (3.30 − 0.269i)11-s − 3.53i·13-s − 1.77i·17-s + 3.02·19-s + 7.41i·23-s − 1.50·25-s − 5.55i·29-s − 9.85i·31-s − 7.32·35-s + 9.85·37-s + 8.38i·41-s − 2.26·43-s + 3.13i·47-s + ⋯ |
L(s) = 1 | − 0.836·5-s + 1.48·7-s + (0.996 − 0.0813i)11-s − 0.980i·13-s − 0.429i·17-s + 0.694·19-s + 1.54i·23-s − 0.300·25-s − 1.03i·29-s − 1.76i·31-s − 1.23·35-s + 1.62·37-s + 1.30i·41-s − 0.345·43-s + 0.456i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.647i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.762 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.005219527\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.005219527\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3.30 + 0.269i)T \) |
good | 5 | \( 1 + 1.86T + 5T^{2} \) |
| 7 | \( 1 - 3.91T + 7T^{2} \) |
| 13 | \( 1 + 3.53iT - 13T^{2} \) |
| 17 | \( 1 + 1.77iT - 17T^{2} \) |
| 19 | \( 1 - 3.02T + 19T^{2} \) |
| 23 | \( 1 - 7.41iT - 23T^{2} \) |
| 29 | \( 1 + 5.55iT - 29T^{2} \) |
| 31 | \( 1 + 9.85iT - 31T^{2} \) |
| 37 | \( 1 - 9.85T + 37T^{2} \) |
| 41 | \( 1 - 8.38iT - 41T^{2} \) |
| 43 | \( 1 + 2.26T + 43T^{2} \) |
| 47 | \( 1 - 3.13iT - 47T^{2} \) |
| 53 | \( 1 + 8.13T + 53T^{2} \) |
| 59 | \( 1 + 10.5iT - 59T^{2} \) |
| 61 | \( 1 + 8.82iT - 61T^{2} \) |
| 67 | \( 1 + 4.84iT - 67T^{2} \) |
| 71 | \( 1 - 0.607iT - 71T^{2} \) |
| 73 | \( 1 - 13.8iT - 73T^{2} \) |
| 79 | \( 1 + 3.15T + 79T^{2} \) |
| 83 | \( 1 - 6.37T + 83T^{2} \) |
| 89 | \( 1 + 15.9T + 89T^{2} \) |
| 97 | \( 1 - 9.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.227080748424149228816906404499, −7.87584111094597633039372179067, −7.48182888417748494482584660989, −6.25153102112154930740022135641, −5.49946663743303762436535294097, −4.62625408326843188053845777664, −3.98399586179645150977347442664, −3.06629861735314785612471765593, −1.78823534438991200898584245996, −0.75433269867036962013398481923,
1.12347621292684529418623564779, 1.97508278213573388080110008019, 3.30861883301933583140866181703, 4.33240787224152817041795406732, 4.58727988162399793591738599159, 5.66348831904745439863575430831, 6.71344637996032918960852856646, 7.26509933053507258707203957887, 8.092445127386432068838319138669, 8.692217222326032466396264582002