L(s) = 1 | − 1.86·5-s + 3.91·7-s + (3.30 − 0.269i)11-s − 3.53i·13-s − 1.77i·17-s + 3.02·19-s + 7.41i·23-s − 1.50·25-s − 5.55i·29-s − 9.85i·31-s − 7.32·35-s + 9.85·37-s + 8.38i·41-s − 2.26·43-s + 3.13i·47-s + ⋯ |
L(s) = 1 | − 0.836·5-s + 1.48·7-s + (0.996 − 0.0813i)11-s − 0.980i·13-s − 0.429i·17-s + 0.694·19-s + 1.54i·23-s − 0.300·25-s − 1.03i·29-s − 1.76i·31-s − 1.23·35-s + 1.62·37-s + 1.30i·41-s − 0.345·43-s + 0.456i·47-s + ⋯ |
Λ(s)=(=(3168s/2ΓC(s)L(s)(0.762+0.647i)Λ(2−s)
Λ(s)=(=(3168s/2ΓC(s+1/2)L(s)(0.762+0.647i)Λ(1−s)
Degree: |
2 |
Conductor: |
3168
= 25⋅32⋅11
|
Sign: |
0.762+0.647i
|
Analytic conductor: |
25.2966 |
Root analytic conductor: |
5.02957 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3168(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3168, ( :1/2), 0.762+0.647i)
|
Particular Values
L(1) |
≈ |
2.005219527 |
L(21) |
≈ |
2.005219527 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−3.30+0.269i)T |
good | 5 | 1+1.86T+5T2 |
| 7 | 1−3.91T+7T2 |
| 13 | 1+3.53iT−13T2 |
| 17 | 1+1.77iT−17T2 |
| 19 | 1−3.02T+19T2 |
| 23 | 1−7.41iT−23T2 |
| 29 | 1+5.55iT−29T2 |
| 31 | 1+9.85iT−31T2 |
| 37 | 1−9.85T+37T2 |
| 41 | 1−8.38iT−41T2 |
| 43 | 1+2.26T+43T2 |
| 47 | 1−3.13iT−47T2 |
| 53 | 1+8.13T+53T2 |
| 59 | 1+10.5iT−59T2 |
| 61 | 1+8.82iT−61T2 |
| 67 | 1+4.84iT−67T2 |
| 71 | 1−0.607iT−71T2 |
| 73 | 1−13.8iT−73T2 |
| 79 | 1+3.15T+79T2 |
| 83 | 1−6.37T+83T2 |
| 89 | 1+15.9T+89T2 |
| 97 | 1−9.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.227080748424149228816906404499, −7.87584111094597633039372179067, −7.48182888417748494482584660989, −6.25153102112154930740022135641, −5.49946663743303762436535294097, −4.62625408326843188053845777664, −3.98399586179645150977347442664, −3.06629861735314785612471765593, −1.78823534438991200898584245996, −0.75433269867036962013398481923,
1.12347621292684529418623564779, 1.97508278213573388080110008019, 3.30861883301933583140866181703, 4.33240787224152817041795406732, 4.58727988162399793591738599159, 5.66348831904745439863575430831, 6.71344637996032918960852856646, 7.26509933053507258707203957887, 8.092445127386432068838319138669, 8.692217222326032466396264582002