Properties

Label 2-3168-44.43-c1-0-41
Degree $2$
Conductor $3168$
Sign $0.762 + 0.647i$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.86·5-s + 3.91·7-s + (3.30 − 0.269i)11-s − 3.53i·13-s − 1.77i·17-s + 3.02·19-s + 7.41i·23-s − 1.50·25-s − 5.55i·29-s − 9.85i·31-s − 7.32·35-s + 9.85·37-s + 8.38i·41-s − 2.26·43-s + 3.13i·47-s + ⋯
L(s)  = 1  − 0.836·5-s + 1.48·7-s + (0.996 − 0.0813i)11-s − 0.980i·13-s − 0.429i·17-s + 0.694·19-s + 1.54i·23-s − 0.300·25-s − 1.03i·29-s − 1.76i·31-s − 1.23·35-s + 1.62·37-s + 1.30i·41-s − 0.345·43-s + 0.456i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.647i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.762 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $0.762 + 0.647i$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3168} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 0.762 + 0.647i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.005219527\)
\(L(\frac12)\) \(\approx\) \(2.005219527\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-3.30 + 0.269i)T \)
good5 \( 1 + 1.86T + 5T^{2} \)
7 \( 1 - 3.91T + 7T^{2} \)
13 \( 1 + 3.53iT - 13T^{2} \)
17 \( 1 + 1.77iT - 17T^{2} \)
19 \( 1 - 3.02T + 19T^{2} \)
23 \( 1 - 7.41iT - 23T^{2} \)
29 \( 1 + 5.55iT - 29T^{2} \)
31 \( 1 + 9.85iT - 31T^{2} \)
37 \( 1 - 9.85T + 37T^{2} \)
41 \( 1 - 8.38iT - 41T^{2} \)
43 \( 1 + 2.26T + 43T^{2} \)
47 \( 1 - 3.13iT - 47T^{2} \)
53 \( 1 + 8.13T + 53T^{2} \)
59 \( 1 + 10.5iT - 59T^{2} \)
61 \( 1 + 8.82iT - 61T^{2} \)
67 \( 1 + 4.84iT - 67T^{2} \)
71 \( 1 - 0.607iT - 71T^{2} \)
73 \( 1 - 13.8iT - 73T^{2} \)
79 \( 1 + 3.15T + 79T^{2} \)
83 \( 1 - 6.37T + 83T^{2} \)
89 \( 1 + 15.9T + 89T^{2} \)
97 \( 1 - 9.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.227080748424149228816906404499, −7.87584111094597633039372179067, −7.48182888417748494482584660989, −6.25153102112154930740022135641, −5.49946663743303762436535294097, −4.62625408326843188053845777664, −3.98399586179645150977347442664, −3.06629861735314785612471765593, −1.78823534438991200898584245996, −0.75433269867036962013398481923, 1.12347621292684529418623564779, 1.97508278213573388080110008019, 3.30861883301933583140866181703, 4.33240787224152817041795406732, 4.58727988162399793591738599159, 5.66348831904745439863575430831, 6.71344637996032918960852856646, 7.26509933053507258707203957887, 8.092445127386432068838319138669, 8.692217222326032466396264582002

Graph of the $Z$-function along the critical line