L(s) = 1 | + 3-s + 7-s + 9-s − 2·13-s − 8·17-s − 19-s + 21-s − 4·23-s − 5·25-s + 27-s − 2·37-s − 2·39-s + 2·41-s − 4·43-s − 6·47-s + 49-s − 8·51-s − 12·53-s − 57-s − 4·59-s − 2·61-s + 63-s + 4·67-s − 4·69-s + 6·71-s + 6·73-s − 5·75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.554·13-s − 1.94·17-s − 0.229·19-s + 0.218·21-s − 0.834·23-s − 25-s + 0.192·27-s − 0.328·37-s − 0.320·39-s + 0.312·41-s − 0.609·43-s − 0.875·47-s + 1/7·49-s − 1.12·51-s − 1.64·53-s − 0.132·57-s − 0.520·59-s − 0.256·61-s + 0.125·63-s + 0.488·67-s − 0.481·69-s + 0.712·71-s + 0.702·73-s − 0.577·75-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3192s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+8T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1−18T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.208329763915009155875693274441, −7.75381208178629701986032179519, −6.78432954817853412246616257104, −6.20105211219491075074899961625, −5.02692945253514422792587878059, −4.40011931011779862680526321493, −3.55875172199588887914229143879, −2.39741119584776535278731996108, −1.79152280881413347668477476302, 0,
1.79152280881413347668477476302, 2.39741119584776535278731996108, 3.55875172199588887914229143879, 4.40011931011779862680526321493, 5.02692945253514422792587878059, 6.20105211219491075074899961625, 6.78432954817853412246616257104, 7.75381208178629701986032179519, 8.208329763915009155875693274441