Properties

Label 4-3192e2-1.1-c1e2-0-2
Degree $4$
Conductor $10188864$
Sign $1$
Analytic cond. $649.650$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s − 2·7-s + 3·9-s − 8·15-s − 4·17-s + 2·19-s − 4·21-s + 4·25-s + 4·27-s + 12·29-s + 12·31-s + 8·35-s − 12·37-s − 12·41-s − 12·43-s − 12·45-s − 24·47-s + 3·49-s − 8·51-s + 4·53-s + 4·57-s − 16·59-s + 4·61-s − 6·63-s − 24·67-s − 12·73-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s − 0.755·7-s + 9-s − 2.06·15-s − 0.970·17-s + 0.458·19-s − 0.872·21-s + 4/5·25-s + 0.769·27-s + 2.22·29-s + 2.15·31-s + 1.35·35-s − 1.97·37-s − 1.87·41-s − 1.82·43-s − 1.78·45-s − 3.50·47-s + 3/7·49-s − 1.12·51-s + 0.549·53-s + 0.529·57-s − 2.08·59-s + 0.512·61-s − 0.755·63-s − 2.93·67-s − 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10188864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10188864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10188864\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(649.650\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 10188864,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
7$C_1$ \( ( 1 + T )^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good5$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 4 T + 20 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 12 T + 76 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 12 T + 90 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 + 12 T + 110 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 12 T + 114 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 24 T + 236 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 4 T + 60 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 16 T + 150 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 + 24 T + 270 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 12 T + 174 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 16 T + 190 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 16 T + 212 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 28 T + 366 T^{2} + 28 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 12 T + 198 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.462399436032068907590945347015, −8.274935678345561594433718390332, −7.903796292839556892021560512037, −7.37413780590136710789175356611, −6.98997765969264461242392868366, −6.83477816890128458220995817469, −6.23352844012666151409034838664, −6.23143646501705730214391949789, −5.03506044716846449582163155312, −4.94701896220361361764655710890, −4.47071256086318044548912069066, −4.20547437352001516235749198810, −3.44354079713731384784731494977, −3.40258510178812708964369422359, −2.93877897115368570253503994234, −2.66814985854442093997786777427, −1.61911530681874039405030078714, −1.40567775873301748409140799060, 0, 0, 1.40567775873301748409140799060, 1.61911530681874039405030078714, 2.66814985854442093997786777427, 2.93877897115368570253503994234, 3.40258510178812708964369422359, 3.44354079713731384784731494977, 4.20547437352001516235749198810, 4.47071256086318044548912069066, 4.94701896220361361764655710890, 5.03506044716846449582163155312, 6.23143646501705730214391949789, 6.23352844012666151409034838664, 6.83477816890128458220995817469, 6.98997765969264461242392868366, 7.37413780590136710789175356611, 7.903796292839556892021560512037, 8.274935678345561594433718390332, 8.462399436032068907590945347015

Graph of the $Z$-function along the critical line