L(s) = 1 | + 2·3-s − 4·5-s − 2·7-s + 3·9-s − 8·15-s − 4·17-s + 2·19-s − 4·21-s + 4·25-s + 4·27-s + 12·29-s + 12·31-s + 8·35-s − 12·37-s − 12·41-s − 12·43-s − 12·45-s − 24·47-s + 3·49-s − 8·51-s + 4·53-s + 4·57-s − 16·59-s + 4·61-s − 6·63-s − 24·67-s − 12·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.78·5-s − 0.755·7-s + 9-s − 2.06·15-s − 0.970·17-s + 0.458·19-s − 0.872·21-s + 4/5·25-s + 0.769·27-s + 2.22·29-s + 2.15·31-s + 1.35·35-s − 1.97·37-s − 1.87·41-s − 1.82·43-s − 1.78·45-s − 3.50·47-s + 3/7·49-s − 1.12·51-s + 0.549·53-s + 0.529·57-s − 2.08·59-s + 0.512·61-s − 0.755·63-s − 2.93·67-s − 1.40·73-s + ⋯ |
Λ(s)=(=(10188864s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10188864s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10188864
= 26⋅32⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
649.650 |
Root analytic conductor: |
5.04858 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 10188864, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)2 |
| 7 | C1 | (1+T)2 |
| 19 | C1 | (1−T)2 |
good | 5 | D4 | 1+4T+12T2+4pT3+p2T4 |
| 11 | C22 | 1+14T2+p2T4 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | D4 | 1+4T+20T2+4pT3+p2T4 |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | D4 | 1−12T+76T2−12pT3+p2T4 |
| 31 | D4 | 1−12T+90T2−12pT3+p2T4 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | D4 | 1+12T+110T2+12pT3+p2T4 |
| 43 | D4 | 1+12T+114T2+12pT3+p2T4 |
| 47 | D4 | 1+24T+236T2+24pT3+p2T4 |
| 53 | D4 | 1−4T+60T2−4pT3+p2T4 |
| 59 | D4 | 1+16T+150T2+16pT3+p2T4 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | D4 | 1+24T+270T2+24pT3+p2T4 |
| 71 | C22 | 1−20T2+p2T4 |
| 73 | D4 | 1+12T+174T2+12pT3+p2T4 |
| 79 | D4 | 1−16T+190T2−16pT3+p2T4 |
| 83 | D4 | 1+16T+212T2+16pT3+p2T4 |
| 89 | D4 | 1+28T+366T2+28pT3+p2T4 |
| 97 | D4 | 1+12T+198T2+12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.462399436032068907590945347015, −8.274935678345561594433718390332, −7.903796292839556892021560512037, −7.37413780590136710789175356611, −6.98997765969264461242392868366, −6.83477816890128458220995817469, −6.23352844012666151409034838664, −6.23143646501705730214391949789, −5.03506044716846449582163155312, −4.94701896220361361764655710890, −4.47071256086318044548912069066, −4.20547437352001516235749198810, −3.44354079713731384784731494977, −3.40258510178812708964369422359, −2.93877897115368570253503994234, −2.66814985854442093997786777427, −1.61911530681874039405030078714, −1.40567775873301748409140799060, 0, 0,
1.40567775873301748409140799060, 1.61911530681874039405030078714, 2.66814985854442093997786777427, 2.93877897115368570253503994234, 3.40258510178812708964369422359, 3.44354079713731384784731494977, 4.20547437352001516235749198810, 4.47071256086318044548912069066, 4.94701896220361361764655710890, 5.03506044716846449582163155312, 6.23143646501705730214391949789, 6.23352844012666151409034838664, 6.83477816890128458220995817469, 6.98997765969264461242392868366, 7.37413780590136710789175356611, 7.903796292839556892021560512037, 8.274935678345561594433718390332, 8.462399436032068907590945347015