Properties

Label 2-3192-1.1-c1-0-55
Degree $2$
Conductor $3192$
Sign $-1$
Analytic cond. $25.4882$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 0.732·5-s + 7-s + 9-s − 4·11-s − 1.46·13-s + 0.732·15-s − 3.26·17-s + 19-s + 21-s − 6.92·23-s − 4.46·25-s + 27-s − 3.26·29-s − 2·31-s − 4·33-s + 0.732·35-s − 4.92·37-s − 1.46·39-s − 8.92·41-s + 4.92·43-s + 0.732·45-s + 0.196·47-s + 49-s − 3.26·51-s + 7.66·53-s − 2.92·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.327·5-s + 0.377·7-s + 0.333·9-s − 1.20·11-s − 0.406·13-s + 0.189·15-s − 0.792·17-s + 0.229·19-s + 0.218·21-s − 1.44·23-s − 0.892·25-s + 0.192·27-s − 0.606·29-s − 0.359·31-s − 0.696·33-s + 0.123·35-s − 0.810·37-s − 0.234·39-s − 1.39·41-s + 0.751·43-s + 0.109·45-s + 0.0286·47-s + 0.142·49-s − 0.457·51-s + 1.05·53-s − 0.394·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3192\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(25.4882\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3192,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 0.732T + 5T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 1.46T + 13T^{2} \)
17 \( 1 + 3.26T + 17T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 + 3.26T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 4.92T + 37T^{2} \)
41 \( 1 + 8.92T + 41T^{2} \)
43 \( 1 - 4.92T + 43T^{2} \)
47 \( 1 - 0.196T + 47T^{2} \)
53 \( 1 - 7.66T + 53T^{2} \)
59 \( 1 + 10.9T + 59T^{2} \)
61 \( 1 - 0.928T + 61T^{2} \)
67 \( 1 - 5.46T + 67T^{2} \)
71 \( 1 - 4.19T + 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 - 2.92T + 79T^{2} \)
83 \( 1 - 8.19T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 11.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.215080694543461831295586226946, −7.69077403006010244619603218209, −6.96597955757863350195984661075, −5.91836790843344527318839669470, −5.24732949074927538314814056862, −4.38183196384062589024908734169, −3.48395451475226006682558209041, −2.38738853561610578284772266510, −1.83437597084645015196398689254, 0, 1.83437597084645015196398689254, 2.38738853561610578284772266510, 3.48395451475226006682558209041, 4.38183196384062589024908734169, 5.24732949074927538314814056862, 5.91836790843344527318839669470, 6.96597955757863350195984661075, 7.69077403006010244619603218209, 8.215080694543461831295586226946

Graph of the $Z$-function along the critical line