L(s) = 1 | − 1.24e4i·3-s − 5.59e5·5-s + 8.71e6i·7-s − 1.11e8·9-s − 1.47e8i·11-s + 4.14e8·13-s + 6.95e9i·15-s − 6.31e8·17-s + 2.19e10i·19-s + 1.08e11·21-s − 7.67e10i·23-s + 1.60e11·25-s + 8.52e11i·27-s + 1.23e11·29-s − 1.90e11i·31-s + ⋯ |
L(s) = 1 | − 1.89i·3-s − 1.43·5-s + 1.51i·7-s − 2.59·9-s − 0.686i·11-s + 0.508·13-s + 2.71i·15-s − 0.0905·17-s + 1.29i·19-s + 2.86·21-s − 0.979i·23-s + 1.04·25-s + 3.01i·27-s + 0.246·29-s − 0.223i·31-s + ⋯ |
Λ(s)=(=(32s/2ΓC(s)L(s)(0.707+0.707i)Λ(17−s)
Λ(s)=(=(32s/2ΓC(s+8)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
32
= 25
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
51.9438 |
Root analytic conductor: |
7.20720 |
Motivic weight: |
16 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ32(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 32, ( :8), 0.707+0.707i)
|
Particular Values
L(217) |
≈ |
1.007547162 |
L(21) |
≈ |
1.007547162 |
L(9) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+1.24e4iT−4.30e7T2 |
| 5 | 1+5.59e5T+1.52e11T2 |
| 7 | 1−8.71e6iT−3.32e13T2 |
| 11 | 1+1.47e8iT−4.59e16T2 |
| 13 | 1−4.14e8T+6.65e17T2 |
| 17 | 1+6.31e8T+4.86e19T2 |
| 19 | 1−2.19e10iT−2.88e20T2 |
| 23 | 1+7.67e10iT−6.13e21T2 |
| 29 | 1−1.23e11T+2.50e23T2 |
| 31 | 1+1.90e11iT−7.27e23T2 |
| 37 | 1+5.54e11T+1.23e25T2 |
| 41 | 1+1.32e13T+6.37e25T2 |
| 43 | 1+4.26e12iT−1.36e26T2 |
| 47 | 1−8.72e12iT−5.66e26T2 |
| 53 | 1−3.66e13T+3.87e27T2 |
| 59 | 1+1.78e14iT−2.15e28T2 |
| 61 | 1−2.89e14T+3.67e28T2 |
| 67 | 1−1.70e14iT−1.64e29T2 |
| 71 | 1+2.91e14iT−4.16e29T2 |
| 73 | 1−1.24e15T+6.50e29T2 |
| 79 | 1−1.72e15iT−2.30e30T2 |
| 83 | 1−4.17e14iT−5.07e30T2 |
| 89 | 1+3.35e15T+1.54e31T2 |
| 97 | 1+6.85e15T+6.14e31T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70800504334046819462381901778, −12.05486290711513256699518249201, −11.32313843439902066358274588193, −8.473802203284402731922901211792, −8.195591618294503718819373207463, −6.72862620168617901389096744341, −5.64531979636092292679654861362, −3.32533721233090034429773653616, −2.05747153682340354106658558534, −0.64302509466326376259400254133,
0.46502023751953663884970447002, 3.35869895965424607285416877588, 4.07752096843611863361843207020, 4.89089370096687217084201458506, 7.15338584363001012396915967469, 8.516347665602809376446659698438, 9.883588361475971481214946493752, 10.85961155799588195300359372728, 11.61962648183551165133214368404, 13.66426004629681264731906362692