L(s) = 1 | − 2·5-s − 3·9-s + 6·13-s + 2·17-s − 25-s − 10·29-s − 2·37-s + 10·41-s + 6·45-s − 7·49-s + 14·53-s − 10·61-s − 12·65-s − 6·73-s + 9·81-s − 4·85-s + 10·89-s + 18·97-s − 2·101-s + 6·109-s − 14·113-s − 18·117-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 9-s + 1.66·13-s + 0.485·17-s − 1/5·25-s − 1.85·29-s − 0.328·37-s + 1.56·41-s + 0.894·45-s − 49-s + 1.92·53-s − 1.28·61-s − 1.48·65-s − 0.702·73-s + 81-s − 0.433·85-s + 1.05·89-s + 1.82·97-s − 0.199·101-s + 0.574·109-s − 1.31·113-s − 1.66·117-s + ⋯ |
Λ(s)=(=(32s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(32s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6555143885 |
L(21) |
≈ |
0.6555143885 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+pT2 |
| 5 | 1+2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1+10T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+pT2 |
| 47 | 1+pT2 |
| 53 | 1−14T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1−18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.73856366990991880815681244917, −15.74882074786535250024495459074, −14.57652563978276046331230069557, −13.27687552535142704095990346642, −11.76661268274493420855693255102, −10.90769214371221130983350005998, −8.955386231165229198073332132052, −7.77199473906097062385997282225, −5.87146418848833687506982135026, −3.67478222653086463350186782835,
3.67478222653086463350186782835, 5.87146418848833687506982135026, 7.77199473906097062385997282225, 8.955386231165229198073332132052, 10.90769214371221130983350005998, 11.76661268274493420855693255102, 13.27687552535142704095990346642, 14.57652563978276046331230069557, 15.74882074786535250024495459074, 16.73856366990991880815681244917