L(s) = 1 | − 135. i·3-s − 581.·5-s − 2.67e3i·7-s − 1.19e4·9-s + 1.41e4i·11-s + 4.28e4·13-s + 7.90e4i·15-s − 1.40e5·17-s + 1.29e5i·19-s − 3.62e5·21-s − 1.96e5i·23-s − 5.22e4·25-s + 7.27e5i·27-s − 3.55e5·29-s + 3.35e3i·31-s + ⋯ |
L(s) = 1 | − 1.67i·3-s − 0.930·5-s − 1.11i·7-s − 1.81·9-s + 0.966i·11-s + 1.49·13-s + 1.56i·15-s − 1.68·17-s + 0.995i·19-s − 1.86·21-s − 0.703i·23-s − 0.133·25-s + 1.36i·27-s − 0.503·29-s + 0.00363i·31-s + ⋯ |
Λ(s)=(=(32s/2ΓC(s)L(s)(−0.707−0.707i)Λ(9−s)
Λ(s)=(=(32s/2ΓC(s+4)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
32
= 25
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
13.0361 |
Root analytic conductor: |
3.61055 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ32(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 32, ( :4), −0.707−0.707i)
|
Particular Values
L(29) |
≈ |
0.229040+0.552952i |
L(21) |
≈ |
0.229040+0.552952i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+135.iT−6.56e3T2 |
| 5 | 1+581.T+3.90e5T2 |
| 7 | 1+2.67e3iT−5.76e6T2 |
| 11 | 1−1.41e4iT−2.14e8T2 |
| 13 | 1−4.28e4T+8.15e8T2 |
| 17 | 1+1.40e5T+6.97e9T2 |
| 19 | 1−1.29e5iT−1.69e10T2 |
| 23 | 1+1.96e5iT−7.83e10T2 |
| 29 | 1+3.55e5T+5.00e11T2 |
| 31 | 1−3.35e3iT−8.52e11T2 |
| 37 | 1−9.07e5T+3.51e12T2 |
| 41 | 1+3.06e6T+7.98e12T2 |
| 43 | 1+5.01e6iT−1.16e13T2 |
| 47 | 1+3.25e6iT−2.38e13T2 |
| 53 | 1−2.34e5T+6.22e13T2 |
| 59 | 1+7.78e6iT−1.46e14T2 |
| 61 | 1+2.42e7T+1.91e14T2 |
| 67 | 1+6.87e6iT−4.06e14T2 |
| 71 | 1+5.76e6iT−6.45e14T2 |
| 73 | 1+1.19e7T+8.06e14T2 |
| 79 | 1−3.55e7iT−1.51e15T2 |
| 83 | 1+2.03e7iT−2.25e15T2 |
| 89 | 1+1.19e7T+3.93e15T2 |
| 97 | 1+3.19e7T+7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.85187390250110299469149861654, −13.06854448663756853344112324211, −11.93824628558070040382219895465, −10.79311460963032039208021045444, −8.462325418541455206241791374352, −7.41715028560302545998238239567, −6.49194101977894172402773192351, −3.98413711600608749817441039965, −1.72129451089016326807996198709, −0.25328177459807282278534473988,
3.18369814818584980981364185652, 4.41460824133692604749422474687, 5.93537970653782596092755562246, 8.502570113137408173272631281172, 9.180300247733256859018160395106, 11.04686666148097301715199130532, 11.42694258607022845690115440073, 13.48297849847818767015006704964, 15.24912527072710623246610824620, 15.57206695491111864912712524943