L(s) = 1 | − 206. i·3-s − 1.39e3·5-s + 1.52e3i·7-s + 1.64e4·9-s − 2.94e5i·11-s − 1.98e5·13-s + 2.88e5i·15-s + 3.67e5·17-s + 9.19e5i·19-s + 3.15e5·21-s − 2.57e6i·23-s + 1.95e6·25-s − 1.55e7i·27-s + 1.40e7·29-s − 4.90e7i·31-s + ⋯ |
L(s) = 1 | − 0.849i·3-s − 0.447·5-s + 0.0908i·7-s + 0.278·9-s − 1.82i·11-s − 0.533·13-s + 0.379i·15-s + 0.259·17-s + 0.371i·19-s + 0.0771·21-s − 0.400i·23-s + 0.200·25-s − 1.08i·27-s + 0.686·29-s − 1.71i·31-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)−Λ(11−s)
Λ(s)=(=(320s/2ΓC(s+5)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
−1
|
Analytic conductor: |
203.314 |
Root analytic conductor: |
14.2588 |
Motivic weight: |
10 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :5), −1)
|
Particular Values
L(211) |
≈ |
1.650170343 |
L(21) |
≈ |
1.650170343 |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+1.39e3T |
good | 3 | 1+206.iT−5.90e4T2 |
| 7 | 1−1.52e3iT−2.82e8T2 |
| 11 | 1+2.94e5iT−2.59e10T2 |
| 13 | 1+1.98e5T+1.37e11T2 |
| 17 | 1−3.67e5T+2.01e12T2 |
| 19 | 1−9.19e5iT−6.13e12T2 |
| 23 | 1+2.57e6iT−4.14e13T2 |
| 29 | 1−1.40e7T+4.20e14T2 |
| 31 | 1+4.90e7iT−8.19e14T2 |
| 37 | 1−1.21e8T+4.80e15T2 |
| 41 | 1+1.48e8T+1.34e16T2 |
| 43 | 1−1.41e8iT−2.16e16T2 |
| 47 | 1+3.99e7iT−5.25e16T2 |
| 53 | 1+1.03e8T+1.74e17T2 |
| 59 | 1−4.38e8iT−5.11e17T2 |
| 61 | 1−2.83e8T+7.13e17T2 |
| 67 | 1+2.00e9iT−1.82e18T2 |
| 71 | 1+1.54e9iT−3.25e18T2 |
| 73 | 1−3.44e9T+4.29e18T2 |
| 79 | 1+2.88e9iT−9.46e18T2 |
| 83 | 1+3.41e9iT−1.55e19T2 |
| 89 | 1+2.47e9T+3.11e19T2 |
| 97 | 1+2.70e9T+7.37e19T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.363567402845948743609862837273, −8.178758067520467644754310812291, −7.75634306706940912707963587432, −6.54535247442954319744243388099, −5.84340815815117005496716708897, −4.48702046495195020177768463533, −3.34788021856252720991722453478, −2.30471428413957611590568213672, −0.987250344852275111573504732314, −0.35864366545543602859634674520,
1.18206625053966884765761118923, 2.41470957735339896138782035271, 3.68926644035856057278198933630, 4.57023093202551840745113908411, 5.14962332969057042488081699888, 6.85486380712241787155762975709, 7.40300554045692841758574268388, 8.638746542663406596977379385377, 9.787336117749519584969648616172, 10.06920885593579486543054002413