L(s) = 1 | − 2.23·5-s − 4.47i·7-s − 3·9-s + 2i·11-s − 4.47·13-s − 6i·19-s − 4.47i·23-s + 5.00·25-s + 10.0i·35-s − 4.47·37-s + 2·41-s + 6.70·45-s + 13.4i·47-s − 13.0·49-s + 13.4·53-s + ⋯ |
L(s) = 1 | − 0.999·5-s − 1.69i·7-s − 9-s + 0.603i·11-s − 1.24·13-s − 1.37i·19-s − 0.932i·23-s + 1.00·25-s + 1.69i·35-s − 0.735·37-s + 0.312·41-s + 0.999·45-s + 1.95i·47-s − 1.85·49-s + 1.84·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.214616 - 0.518130i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.214616 - 0.518130i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 2.23T \) |
good | 3 | \( 1 + 3T^{2} \) |
| 7 | \( 1 + 4.47iT - 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 4.47T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 + 4.47iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 4.47T + 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 13.4iT - 47T^{2} \) |
| 53 | \( 1 - 13.4T + 53T^{2} \) |
| 59 | \( 1 + 14iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 14T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19095231951279286020364948773, −10.56136632464407735050871933584, −9.464143784383224213805660866195, −8.273235517327712159386382596749, −7.36117283476782268155519649770, −6.78773385258931231824529573579, −4.93953054081686779578491434614, −4.17784388377032040855948361174, −2.83092772990423054658736886172, −0.38329903122714331145618322510,
2.45746584430386316812710546766, 3.56692841494322765161433522685, 5.22023496169602041334162095360, 5.86913560571097498187262524198, 7.34280393125255434375117540885, 8.395522189463721427432451945155, 8.879967857585108203739735639697, 10.11312107605266051592590794003, 11.42176006962823845626021208649, 11.94899967580580442419799520115