L(s) = 1 | + 2·3-s + 2·5-s − 2·7-s + 2·9-s + 8·11-s + 6·13-s + 4·15-s − 6·17-s − 4·21-s − 6·23-s − 25-s + 6·27-s − 4·29-s + 16·33-s − 4·35-s + 6·37-s + 12·39-s + 12·41-s − 6·43-s + 4·45-s − 18·47-s + 2·49-s − 12·51-s − 10·53-s + 16·55-s − 4·63-s + 12·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.894·5-s − 0.755·7-s + 2/3·9-s + 2.41·11-s + 1.66·13-s + 1.03·15-s − 1.45·17-s − 0.872·21-s − 1.25·23-s − 1/5·25-s + 1.15·27-s − 0.742·29-s + 2.78·33-s − 0.676·35-s + 0.986·37-s + 1.92·39-s + 1.87·41-s − 0.914·43-s + 0.596·45-s − 2.62·47-s + 2/7·49-s − 1.68·51-s − 1.37·53-s + 2.15·55-s − 0.503·63-s + 1.48·65-s + ⋯ |
Λ(s)=(=(102400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(102400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
102400
= 212⋅52
|
Sign: |
1
|
Analytic conductor: |
6.52911 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 102400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.848788027 |
L(21) |
≈ |
2.848788027 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−2T+pT2 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)(1+8T+pT2) |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 47 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 53 | C2 | (1−4T+pT2)(1+14T+pT2) |
| 59 | C22 | 1−18T2+p2T4 |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−16T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C22 | 1+14T+98T2+14pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.68837005239998595916829500718, −11.42970449629801196089870221042, −11.02032927822570671658654264873, −10.33616522897688550485706945452, −9.717172452821239387655322594668, −9.462901133023270393262549780446, −9.071570556925653699035058463326, −8.801708660031791190087577861401, −8.203404459831289937590137128669, −7.76297179005460585182312075616, −6.70417239734258928387200378300, −6.56410494578771539097241739500, −6.21382746456286194991743353501, −5.71506287885804007776026299680, −4.43660479879381727218012065668, −4.16317567156087977885479179183, −3.52281069771939813450087708539, −2.96927320154170829308493493698, −1.93694329587974974996183938080, −1.44439507623810985111621831824,
1.44439507623810985111621831824, 1.93694329587974974996183938080, 2.96927320154170829308493493698, 3.52281069771939813450087708539, 4.16317567156087977885479179183, 4.43660479879381727218012065668, 5.71506287885804007776026299680, 6.21382746456286194991743353501, 6.56410494578771539097241739500, 6.70417239734258928387200378300, 7.76297179005460585182312075616, 8.203404459831289937590137128669, 8.801708660031791190087577861401, 9.071570556925653699035058463326, 9.462901133023270393262549780446, 9.717172452821239387655322594668, 10.33616522897688550485706945452, 11.02032927822570671658654264873, 11.42970449629801196089870221042, 11.68837005239998595916829500718