L(s) = 1 | + 2·3-s + (−2 − i)5-s + (3 − 3i)7-s + 9-s + (1 + i)11-s − 2i·13-s + (−4 − 2i)15-s + (1 − i)17-s + (3 + 3i)19-s + (6 − 6i)21-s + (1 + i)23-s + (3 + 4i)25-s − 4·27-s + (−7 + 7i)29-s − 2i·31-s + ⋯ |
L(s) = 1 | + 1.15·3-s + (−0.894 − 0.447i)5-s + (1.13 − 1.13i)7-s + 0.333·9-s + (0.301 + 0.301i)11-s − 0.554i·13-s + (−1.03 − 0.516i)15-s + (0.242 − 0.242i)17-s + (0.688 + 0.688i)19-s + (1.30 − 1.30i)21-s + (0.208 + 0.208i)23-s + (0.600 + 0.800i)25-s − 0.769·27-s + (−1.29 + 1.29i)29-s − 0.359i·31-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(0.811+0.584i)Λ(2−s)
Λ(s)=(=(320s/2ΓC(s+1/2)L(s)(0.811+0.584i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
0.811+0.584i
|
Analytic conductor: |
2.55521 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(303,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :1/2), 0.811+0.584i)
|
Particular Values
L(1) |
≈ |
1.68941−0.545382i |
L(21) |
≈ |
1.68941−0.545382i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2+i)T |
good | 3 | 1−2T+3T2 |
| 7 | 1+(−3+3i)T−7iT2 |
| 11 | 1+(−1−i)T+11iT2 |
| 13 | 1+2iT−13T2 |
| 17 | 1+(−1+i)T−17iT2 |
| 19 | 1+(−3−3i)T+19iT2 |
| 23 | 1+(−1−i)T+23iT2 |
| 29 | 1+(7−7i)T−29iT2 |
| 31 | 1+2iT−31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+4iT−41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+(−7−7i)T+47iT2 |
| 53 | 1+8T+53T2 |
| 59 | 1+(3−3i)T−59iT2 |
| 61 | 1+(1+i)T+61iT2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+(−3+3i)T−73iT2 |
| 79 | 1+8T+79T2 |
| 83 | 1−2T+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(11−11i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49078568171744158644264814125, −10.68888766525442977472543815130, −9.478182554347819723251539097819, −8.545716628297638734549363976848, −7.69993671153038351534142081142, −7.35378707532596062831670289749, −5.29173233385468064927013894560, −4.15979097804442808367545409375, −3.30341074745633033539460164973, −1.40955617353133347827143458429,
2.11640262027913904639651854572, 3.22925393380734205009349706187, 4.42050212556708163117585892987, 5.77524046318002532213843835306, 7.27628014750412082123667030193, 8.085843928995543131546044172507, 8.742467991714931292882188491978, 9.528214016195289226326838627861, 11.18527061447747119851428558245, 11.50814938353155228541648729155