Properties

Label 2-320-5.4-c3-0-18
Degree 22
Conductor 320320
Sign 0.9830.178i0.983 - 0.178i
Analytic cond. 18.880618.8806
Root an. cond. 4.345184.34518
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (11 − 2i)5-s + 27·9-s + 92i·13-s − 104i·17-s + (117 − 44i)25-s + 130·29-s + 396i·37-s + 230·41-s + (297 − 54i)45-s + 343·49-s − 572i·53-s + 830·61-s + (184 + 1.01e3i)65-s + 592i·73-s + 729·81-s + ⋯
L(s)  = 1  + (0.983 − 0.178i)5-s + 9-s + 1.96i·13-s − 1.48i·17-s + (0.936 − 0.351i)25-s + 0.832·29-s + 1.75i·37-s + 0.876·41-s + (0.983 − 0.178i)45-s + 49-s − 1.48i·53-s + 1.74·61-s + (0.351 + 1.93i)65-s + 0.949i·73-s + 0.999·81-s + ⋯

Functional equation

Λ(s)=(320s/2ΓC(s)L(s)=((0.9830.178i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.178i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(320s/2ΓC(s+3/2)L(s)=((0.9830.178i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.983 - 0.178i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 320320    =    2652^{6} \cdot 5
Sign: 0.9830.178i0.983 - 0.178i
Analytic conductor: 18.880618.8806
Root analytic conductor: 4.345184.34518
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ320(129,)\chi_{320} (129, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 320, ( :3/2), 0.9830.178i)(2,\ 320,\ (\ :3/2),\ 0.983 - 0.178i)

Particular Values

L(2)L(2) \approx 2.4269692992.426969299
L(12)L(\frac12) \approx 2.4269692992.426969299
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(11+2i)T 1 + (-11 + 2i)T
good3 127T2 1 - 27T^{2}
7 1343T2 1 - 343T^{2}
11 1+1.33e3T2 1 + 1.33e3T^{2}
13 192iT2.19e3T2 1 - 92iT - 2.19e3T^{2}
17 1+104iT4.91e3T2 1 + 104iT - 4.91e3T^{2}
19 1+6.85e3T2 1 + 6.85e3T^{2}
23 11.21e4T2 1 - 1.21e4T^{2}
29 1130T+2.43e4T2 1 - 130T + 2.43e4T^{2}
31 1+2.97e4T2 1 + 2.97e4T^{2}
37 1396iT5.06e4T2 1 - 396iT - 5.06e4T^{2}
41 1230T+6.89e4T2 1 - 230T + 6.89e4T^{2}
43 17.95e4T2 1 - 7.95e4T^{2}
47 11.03e5T2 1 - 1.03e5T^{2}
53 1+572iT1.48e5T2 1 + 572iT - 1.48e5T^{2}
59 1+2.05e5T2 1 + 2.05e5T^{2}
61 1830T+2.26e5T2 1 - 830T + 2.26e5T^{2}
67 13.00e5T2 1 - 3.00e5T^{2}
71 1+3.57e5T2 1 + 3.57e5T^{2}
73 1592iT3.89e5T2 1 - 592iT - 3.89e5T^{2}
79 1+4.93e5T2 1 + 4.93e5T^{2}
83 15.71e5T2 1 - 5.71e5T^{2}
89 1+1.67e3T+7.04e5T2 1 + 1.67e3T + 7.04e5T^{2}
97 1+1.81e3iT9.12e5T2 1 + 1.81e3iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.30998510555258313307458755969, −9.987836193224612094693890950500, −9.553716625062177340444559116481, −8.605416351110581546438675354429, −7.07496566472422275325860357065, −6.55793097876415324198428815531, −5.12210525051756329349756107597, −4.24969900961530370403976375404, −2.47041010066281396351503514633, −1.27113362172153832304053666927, 1.10795957326549134486653797820, 2.52544736311374169812265038982, 3.93774191750573984236258134170, 5.37616669333440697868220933832, 6.14292864079838496245629492831, 7.32954636025287382537985767739, 8.314249022432188667688014427833, 9.467293736291278086317177880099, 10.46530810280346546523870865482, 10.66245508300188475930443054229

Graph of the ZZ-function along the critical line