Properties

Label 2-320-5.4-c3-0-13
Degree $2$
Conductor $320$
Sign $-0.268 - 0.963i$
Analytic cond. $18.8806$
Root an. cond. $4.34518$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·3-s + (3 + 10.7i)5-s − 4i·7-s + 11·9-s + 43.0·11-s + 21.5i·13-s + (−43.0 + 12i)15-s + 43.0i·17-s + 129.·19-s + 16·21-s − 52i·23-s + (−106. + 64.6i)25-s + 152i·27-s − 158·29-s − 172.·31-s + ⋯
L(s)  = 1  + 0.769i·3-s + (0.268 + 0.963i)5-s − 0.215i·7-s + 0.407·9-s + 1.18·11-s + 0.459i·13-s + (−0.741 + 0.206i)15-s + 0.614i·17-s + 1.56·19-s + 0.166·21-s − 0.471i·23-s + (−0.855 + 0.516i)25-s + 1.08i·27-s − 1.01·29-s − 0.998·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.268 - 0.963i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.268 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-0.268 - 0.963i$
Analytic conductor: \(18.8806\)
Root analytic conductor: \(4.34518\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :3/2),\ -0.268 - 0.963i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.102765095\)
\(L(\frac12)\) \(\approx\) \(2.102765095\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-3 - 10.7i)T \)
good3 \( 1 - 4iT - 27T^{2} \)
7 \( 1 + 4iT - 343T^{2} \)
11 \( 1 - 43.0T + 1.33e3T^{2} \)
13 \( 1 - 21.5iT - 2.19e3T^{2} \)
17 \( 1 - 43.0iT - 4.91e3T^{2} \)
19 \( 1 - 129.T + 6.85e3T^{2} \)
23 \( 1 + 52iT - 1.21e4T^{2} \)
29 \( 1 + 158T + 2.43e4T^{2} \)
31 \( 1 + 172.T + 2.97e4T^{2} \)
37 \( 1 - 280. iT - 5.06e4T^{2} \)
41 \( 1 + 170T + 6.89e4T^{2} \)
43 \( 1 + 316iT - 7.95e4T^{2} \)
47 \( 1 + 244iT - 1.03e5T^{2} \)
53 \( 1 - 495. iT - 1.48e5T^{2} \)
59 \( 1 + 646.T + 2.05e5T^{2} \)
61 \( 1 + 82T + 2.26e5T^{2} \)
67 \( 1 - 692iT - 3.00e5T^{2} \)
71 \( 1 - 947.T + 3.57e5T^{2} \)
73 \( 1 - 430. iT - 3.89e5T^{2} \)
79 \( 1 - 344.T + 4.93e5T^{2} \)
83 \( 1 + 940iT - 5.71e5T^{2} \)
89 \( 1 + 6T + 7.04e5T^{2} \)
97 \( 1 + 1.07e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.30790819982174645084270036262, −10.46476908877465645302359531877, −9.706746487669844775187820393853, −8.981579919983805669645477154371, −7.42493460130815172522521486026, −6.71465616967036987419443743749, −5.52634749362905251221890284059, −4.13948253143165837337601582924, −3.36492477554099515696462360290, −1.61640797696914413981665877773, 0.842347184336042013070015873529, 1.83517951677057620329067047007, 3.64395668175804502055556935066, 5.01346302371628956398508410082, 5.98266567921707765269299099833, 7.17571904774894764788738321438, 7.929878206461381410977859231740, 9.275064262436108460850434415568, 9.574377270996392113911424635951, 11.17990961661716073109714249680

Graph of the $Z$-function along the critical line