Properties

Label 2-3200-8.5-c1-0-22
Degree $2$
Conductor $3200$
Sign $-i$
Analytic cond. $25.5521$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·3-s − 3.16·7-s + 0.999·9-s − 4.47i·21-s + 9.48·23-s + 5.65i·27-s − 8.94i·29-s + 12·41-s + 12.7i·43-s − 9.48·47-s + 3.00·49-s + 13.4i·61-s − 3.16·63-s − 4.24i·67-s + 13.4i·69-s + ⋯
L(s)  = 1  + 0.816i·3-s − 1.19·7-s + 0.333·9-s − 0.975i·21-s + 1.97·23-s + 1.08i·27-s − 1.66i·29-s + 1.87·41-s + 1.94i·43-s − 1.38·47-s + 0.428·49-s + 1.71i·61-s − 0.398·63-s − 0.518i·67-s + 1.61i·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3200\)    =    \(2^{7} \cdot 5^{2}\)
Sign: $-i$
Analytic conductor: \(25.5521\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3200} (1601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3200,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.528098245\)
\(L(\frac12)\) \(\approx\) \(1.528098245\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 1.41iT - 3T^{2} \)
7 \( 1 + 3.16T + 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 - 9.48T + 23T^{2} \)
29 \( 1 + 8.94iT - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 12T + 41T^{2} \)
43 \( 1 - 12.7iT - 43T^{2} \)
47 \( 1 + 9.48T + 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 - 13.4iT - 61T^{2} \)
67 \( 1 + 4.24iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 15.5iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.267734746584264247516021152531, −8.145784026876213278835904311687, −7.29132315930635251732461621340, −6.56369403976058871638616933801, −5.86197909919710251196310555134, −4.85704260264121078331203349494, −4.20799995469679379846350094327, −3.32575124432422205203599727838, −2.61432698199595849931782372763, −1.00821793580506145359155993651, 0.57913438628799109247460072118, 1.68515344867657993320041582016, 2.85244636023037056017606456719, 3.53110413824044632371810507149, 4.65937574001803619265214304332, 5.55258207921656896071548240671, 6.48799290492837190035818987181, 6.96350641164489080670922143511, 7.47046846487800291775187937119, 8.515398992535737671923890554448

Graph of the $Z$-function along the critical line