L(s) = 1 | + 1.41i·3-s − 3.16·7-s + 0.999·9-s − 4.47i·21-s + 9.48·23-s + 5.65i·27-s − 8.94i·29-s + 12·41-s + 12.7i·43-s − 9.48·47-s + 3.00·49-s + 13.4i·61-s − 3.16·63-s − 4.24i·67-s + 13.4i·69-s + ⋯ |
L(s) = 1 | + 0.816i·3-s − 1.19·7-s + 0.333·9-s − 0.975i·21-s + 1.97·23-s + 1.08i·27-s − 1.66i·29-s + 1.87·41-s + 1.94i·43-s − 1.38·47-s + 0.428·49-s + 1.71i·61-s − 0.398·63-s − 0.518i·67-s + 1.61i·69-s + ⋯ |
Λ(s)=(=(3200s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(3200s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
3200
= 27⋅52
|
Sign: |
−i
|
Analytic conductor: |
25.5521 |
Root analytic conductor: |
5.05491 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3200(1601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3200, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
1.528098245 |
L(21) |
≈ |
1.528098245 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−1.41iT−3T2 |
| 7 | 1+3.16T+7T2 |
| 11 | 1−11T2 |
| 13 | 1−13T2 |
| 17 | 1+17T2 |
| 19 | 1−19T2 |
| 23 | 1−9.48T+23T2 |
| 29 | 1+8.94iT−29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1−12T+41T2 |
| 43 | 1−12.7iT−43T2 |
| 47 | 1+9.48T+47T2 |
| 53 | 1−53T2 |
| 59 | 1−59T2 |
| 61 | 1−13.4iT−61T2 |
| 67 | 1+4.24iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+73T2 |
| 79 | 1+79T2 |
| 83 | 1−15.5iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.267734746584264247516021152531, −8.145784026876213278835904311687, −7.29132315930635251732461621340, −6.56369403976058871638616933801, −5.86197909919710251196310555134, −4.85704260264121078331203349494, −4.20799995469679379846350094327, −3.32575124432422205203599727838, −2.61432698199595849931782372763, −1.00821793580506145359155993651,
0.57913438628799109247460072118, 1.68515344867657993320041582016, 2.85244636023037056017606456719, 3.53110413824044632371810507149, 4.65937574001803619265214304332, 5.55258207921656896071548240671, 6.48799290492837190035818987181, 6.96350641164489080670922143511, 7.47046846487800291775187937119, 8.515398992535737671923890554448