L(s) = 1 | + (−0.841 + 0.540i)3-s + (0.544 − 1.19i)7-s + (0.415 − 0.909i)9-s + (−0.797 − 0.234i)13-s + (−0.698 − 1.53i)19-s + (0.186 + 1.29i)21-s + (−0.959 − 0.281i)25-s + (0.142 + 0.989i)27-s + (−0.273 + 0.0801i)31-s − 1.91·37-s + (0.797 − 0.234i)39-s + (−1.25 + 1.45i)43-s + (−0.468 − 0.540i)49-s + (1.41 + 0.909i)57-s + (−0.239 − 1.66i)61-s + ⋯ |
L(s) = 1 | + (−0.841 + 0.540i)3-s + (0.544 − 1.19i)7-s + (0.415 − 0.909i)9-s + (−0.797 − 0.234i)13-s + (−0.698 − 1.53i)19-s + (0.186 + 1.29i)21-s + (−0.959 − 0.281i)25-s + (0.142 + 0.989i)27-s + (−0.273 + 0.0801i)31-s − 1.91·37-s + (0.797 − 0.234i)39-s + (−1.25 + 1.45i)43-s + (−0.468 − 0.540i)49-s + (1.41 + 0.909i)57-s + (−0.239 − 1.66i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.463 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.463 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5289796546\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5289796546\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.841 - 0.540i)T \) |
| 67 | \( 1 + (-0.959 - 0.281i)T \) |
good | 5 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 7 | \( 1 + (-0.544 + 1.19i)T + (-0.654 - 0.755i)T^{2} \) |
| 11 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 13 | \( 1 + (0.797 + 0.234i)T + (0.841 + 0.540i)T^{2} \) |
| 17 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 19 | \( 1 + (0.698 + 1.53i)T + (-0.654 + 0.755i)T^{2} \) |
| 23 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.273 - 0.0801i)T + (0.841 - 0.540i)T^{2} \) |
| 37 | \( 1 + 1.91T + T^{2} \) |
| 41 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 43 | \( 1 + (1.25 - 1.45i)T + (-0.142 - 0.989i)T^{2} \) |
| 47 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 53 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 59 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 61 | \( 1 + (0.239 + 1.66i)T + (-0.959 + 0.281i)T^{2} \) |
| 71 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 73 | \( 1 + (-0.0405 - 0.281i)T + (-0.959 + 0.281i)T^{2} \) |
| 79 | \( 1 + (1.84 + 0.540i)T + (0.841 + 0.540i)T^{2} \) |
| 83 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 89 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 97 | \( 1 - 1.68T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.637322616264086959614104007244, −7.72702612716764118367969778477, −6.98981155769894544185729458737, −6.46699177001312184749168055445, −5.32954934096106080269834046967, −4.74863134224319635961267709234, −4.14234991907198829521347885934, −3.16813709155864463561006115575, −1.74648742397330497905908348314, −0.33948603374216275500986429955,
1.74032095961211331070223656552, 2.18992389403935612858383460358, 3.63760592673497916987219729381, 4.71625390051147910156741035805, 5.47997952967927170134077541226, 5.87908681036312086617584730975, 6.83424994413530122483504164231, 7.53396581713877216343582175223, 8.329212871271315056946017739926, 8.888351268132571993043996057513