L(s) = 1 | + (−0.841 + 0.540i)3-s + (0.544 − 1.19i)7-s + (0.415 − 0.909i)9-s + (−0.797 − 0.234i)13-s + (−0.698 − 1.53i)19-s + (0.186 + 1.29i)21-s + (−0.959 − 0.281i)25-s + (0.142 + 0.989i)27-s + (−0.273 + 0.0801i)31-s − 1.91·37-s + (0.797 − 0.234i)39-s + (−1.25 + 1.45i)43-s + (−0.468 − 0.540i)49-s + (1.41 + 0.909i)57-s + (−0.239 − 1.66i)61-s + ⋯ |
L(s) = 1 | + (−0.841 + 0.540i)3-s + (0.544 − 1.19i)7-s + (0.415 − 0.909i)9-s + (−0.797 − 0.234i)13-s + (−0.698 − 1.53i)19-s + (0.186 + 1.29i)21-s + (−0.959 − 0.281i)25-s + (0.142 + 0.989i)27-s + (−0.273 + 0.0801i)31-s − 1.91·37-s + (0.797 − 0.234i)39-s + (−1.25 + 1.45i)43-s + (−0.468 − 0.540i)49-s + (1.41 + 0.909i)57-s + (−0.239 − 1.66i)61-s + ⋯ |
Λ(s)=(=(3216s/2ΓC(s)L(s)(−0.463+0.886i)Λ(1−s)
Λ(s)=(=(3216s/2ΓC(s)L(s)(−0.463+0.886i)Λ(1−s)
Degree: |
2 |
Conductor: |
3216
= 24⋅3⋅67
|
Sign: |
−0.463+0.886i
|
Analytic conductor: |
1.60499 |
Root analytic conductor: |
1.26688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3216(2369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3216, ( :0), −0.463+0.886i)
|
Particular Values
L(21) |
≈ |
0.5289796546 |
L(21) |
≈ |
0.5289796546 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.841−0.540i)T |
| 67 | 1+(−0.959−0.281i)T |
good | 5 | 1+(0.959+0.281i)T2 |
| 7 | 1+(−0.544+1.19i)T+(−0.654−0.755i)T2 |
| 11 | 1+(0.959+0.281i)T2 |
| 13 | 1+(0.797+0.234i)T+(0.841+0.540i)T2 |
| 17 | 1+(0.142+0.989i)T2 |
| 19 | 1+(0.698+1.53i)T+(−0.654+0.755i)T2 |
| 23 | 1+(−0.415+0.909i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.273−0.0801i)T+(0.841−0.540i)T2 |
| 37 | 1+1.91T+T2 |
| 41 | 1+(0.142+0.989i)T2 |
| 43 | 1+(1.25−1.45i)T+(−0.142−0.989i)T2 |
| 47 | 1+(−0.415+0.909i)T2 |
| 53 | 1+(0.142−0.989i)T2 |
| 59 | 1+(−0.841+0.540i)T2 |
| 61 | 1+(0.239+1.66i)T+(−0.959+0.281i)T2 |
| 71 | 1+(0.142−0.989i)T2 |
| 73 | 1+(−0.0405−0.281i)T+(−0.959+0.281i)T2 |
| 79 | 1+(1.84+0.540i)T+(0.841+0.540i)T2 |
| 83 | 1+(0.959+0.281i)T2 |
| 89 | 1+(−0.415−0.909i)T2 |
| 97 | 1−1.68T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.637322616264086959614104007244, −7.72702612716764118367969778477, −6.98981155769894544185729458737, −6.46699177001312184749168055445, −5.32954934096106080269834046967, −4.74863134224319635961267709234, −4.14234991907198829521347885934, −3.16813709155864463561006115575, −1.74648742397330497905908348314, −0.33948603374216275500986429955,
1.74032095961211331070223656552, 2.18992389403935612858383460358, 3.63760592673497916987219729381, 4.71625390051147910156741035805, 5.47997952967927170134077541226, 5.87908681036312086617584730975, 6.83424994413530122483504164231, 7.53396581713877216343582175223, 8.329212871271315056946017739926, 8.888351268132571993043996057513