Properties

Label 2-3234-1.1-c1-0-53
Degree $2$
Conductor $3234$
Sign $-1$
Analytic cond. $25.8236$
Root an. cond. $5.08169$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 3.29·5-s + 6-s − 8-s + 9-s − 3.29·10-s − 11-s − 12-s − 6.06·13-s − 3.29·15-s + 16-s + 6.11·17-s − 18-s − 0.0511·19-s + 3.29·20-s + 22-s − 6.75·23-s + 24-s + 5.82·25-s + 6.06·26-s − 27-s + 2.82·29-s + 3.29·30-s − 5.87·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.47·5-s + 0.408·6-s − 0.353·8-s + 0.333·9-s − 1.04·10-s − 0.301·11-s − 0.288·12-s − 1.68·13-s − 0.849·15-s + 0.250·16-s + 1.48·17-s − 0.235·18-s − 0.0117·19-s + 0.735·20-s + 0.213·22-s − 1.40·23-s + 0.204·24-s + 1.16·25-s + 1.19·26-s − 0.192·27-s + 0.525·29-s + 0.600·30-s − 1.05·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3234\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(25.8236\)
Root analytic conductor: \(5.08169\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3234,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 3.29T + 5T^{2} \)
13 \( 1 + 6.06T + 13T^{2} \)
17 \( 1 - 6.11T + 17T^{2} \)
19 \( 1 + 0.0511T + 19T^{2} \)
23 \( 1 + 6.75T + 23T^{2} \)
29 \( 1 - 2.82T + 29T^{2} \)
31 \( 1 + 5.87T + 31T^{2} \)
37 \( 1 + 8.31T + 37T^{2} \)
41 \( 1 + 6.11T + 41T^{2} \)
43 \( 1 - 2.90T + 43T^{2} \)
47 \( 1 + 1.22T + 47T^{2} \)
53 \( 1 - 3.00T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 + 7.23T + 61T^{2} \)
67 \( 1 + 1.68T + 67T^{2} \)
71 \( 1 + 6.47T + 71T^{2} \)
73 \( 1 - 11.6T + 73T^{2} \)
79 \( 1 + 9.13T + 79T^{2} \)
83 \( 1 + 0.951T + 83T^{2} \)
89 \( 1 + 16.5T + 89T^{2} \)
97 \( 1 - 14.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.278059559907465290082275721535, −7.47423827082841620935772709381, −6.87203851321549416368384114933, −5.87477844325301664105986250875, −5.52487197537645071332289976333, −4.69769880208904966411307553228, −3.24276316508585736914668113187, −2.22264811937197552883031382220, −1.51339317206990527609371692587, 0, 1.51339317206990527609371692587, 2.22264811937197552883031382220, 3.24276316508585736914668113187, 4.69769880208904966411307553228, 5.52487197537645071332289976333, 5.87477844325301664105986250875, 6.87203851321549416368384114933, 7.47423827082841620935772709381, 8.278059559907465290082275721535

Graph of the $Z$-function along the critical line